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Abstract

The theories of photochemical ionization followed by geminate recombi-

nation and separation of ions are developed to give accurate explanation of

recent experimental findings. The Differential Encounter Theory (DET) is

applied to the analysis of ionization kinetics of Rhodamine 3B quenched by

N.N-dimethyleaniline in seven solvents with different viscosities. We found

that it was the neglect of non-stationary stage that used to lead to wrong

extraction of reaction radii and tunneling lengths in previous analyses of ex-

perimental data. The Unified Theory (UT) of photochemical charge separa-

tion is employed to fit the data obtained for photo-excited perylene quenched

by aromatic amines in dimethylsulfoxide-glycerol mixtures. An explanation

is found for the non-monotonous dependence of recombination efficiency on

the inter-ion diffusion. Fluorescence dynamics of perylene in the presence of

tetracyanoethylene in acetonitrile as well as the data on the recombination

dynamics of ion pairs generated upon electron transfer quenching in the same

system are analyzed and the explanation of unexpectedly low yield of survived

ions is proposed. The UT is extended to explicitly account for reaction coor-

dinate dynamics and for a proper description of the radical ions with different

spin states in arbitrary large external magnetic fields. The limits of applica-

bility of previously known incoherent models of spin conversion are specified.

Analyzing a number of experiments, it is shown that electron transfer, both

forward and backward, is essentially non-contact reaction. It’s proper descrip-

tion is possible only with distance dependent rates. The spatial dependence

of the transfer rate at arbitrary large electron coupling is studied for both

resonance and highly exergonic electron transfer.
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I. INTRODUCTION AND THEORETICAL BACKGROUND

Photochemical ionization and charge separation in liquid solutions is a promising way for

conservation and utilization of light energy. As ions are created by primary photo-excitation,

they may be separated by diffusion if they escape geminate recombination to either excited

or ground states of the reactants. To involve more free ions in the subsequent reactions of

photosynthesis or in electric current, one has to optimize the charge separation quantum

yield. This may be done by the proper choice of reactants and solutions.

One of the simplest bimolecular reactions in liquid solutions is the impurity quenching

of excited donor D∗ by charge transfer to electron acceptors A. The competition of the

excitation decay with the diffusion assisted electron transfer is represented by the following

reaction scheme:

D∗ + A −→ D+ + A− , (1)

↓ τ

where τ is the donor excited state lifetime in the absence of acceptors.

A. Differential Encounter Theory

In frames of the Differential Encounter Theory (DET), the energy dissipation is described

by the following equation for the excitation density:

Ṅ∗ = −k(t) c N∗(t)− N∗

τ
. (2)

Here N∗(t) = [D∗] is the survival probability of excitation and c = [A] is the concentration

of quenchers. The latter is constant if the quenchers are in great excess. Immediately after

the δ-pulse excitation there are 100% excitations, so that N∗(0) = 1. The relative quantum

yield of fluorescence quenching is1:

η =

∫

∞

0 N∗(c, t)dt
∫

∞

0 N∗(0, t)dt
=

1

1 + cκτ
. (3)

In the last expression, η is presented as the Stern-Volmer law. The quantity κ is called the

Stern-Volmer constant. In reality, it is a constant only at small concentration of acceptors,

c, while at larger concentration, κ increases approaching the kinetic constant k0 = k(0) at

c→∞ (Ref.2).

The reaction constant k(t) is found from the following DET equations for the pair dis-

tribution function of the reactants n(r, t):
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k(t) =
∫

W (r)n(r, t)d3r , ṅ = −W (r)n(r, t) + D∆n ,
∂n

∂r

∣

∣

∣

∣

∣

r=σ

= 0 , (4)

where n(r, 0) = 1. The input data are only the diffusion coefficient D, the contact radius

σ and the transfer rate W (r) at the distance r between the reactants. The reaction always

starts with the maximal reaction rate constant

k(0) = k0 =
∫

W (r) d3r . (5)

and then slows down gradually, approaching at t≫ R2
Q/D the stationary value, k = k(∞).

The latter can be expressed via the stationary reactant distribution, ns:

k =
∫

W (r)ns(r)d
3r = 4πRQD . (6)

The stationary equation for ns, which follows from Eq. (4), takes the form

Wns =
D

r2

∂

∂r
r2∂ns

∂r
, (7)

and should be solved with the same boundary condition. The last equality in Eq. (6) is

actually a definition of the effective reaction radius RQ that can be larger or smaller than

the contact radius σ. The effective quenching radius is a liquid analog of the reaction cross-

section in gas phase kinetics. The specification of the diffusional dependence of RQ(D) is

the main achievement of DET. This dependence plays an important role in chemical kinetics

of liquid state reactions, the same role as the energy (velocity) dependence of the gas phase

reaction cross-section.

There are two regimes of a transfer reaction: kinetic and diffusional. The reaction is

kinetic if the main factor that controls it, is the magnitude of the kinetic constant. This

happens at small viscosity of the solvent (fast diffusion of the reactants). The opposite —

diffusional regime occurs if the solvent viscosity is large (slow diffusion of the reactants). In

other words, the reaction is in the kinetic regime if k0 ≪ kD, and in the diffusional regime if

k0 ≫ kD, where kD = 4πσD — the so called diffusional constant.

The reaction constant k(t) is really a constant in the kinetic regime, that is k(t) ≈ k0 ≈
k. The pair distribution function also changes little with time: n(r, t) ≈ n(r, 0). On the

contrary, the diffusional regime is characterized by a big temporal changes in both k(t) and

n(r, t). We also have RQ ≤ σ in the kinetic regime, while in the diffusional regime, RQ

increases monotonously with the solvent viscosity3.

Since the real shape of the transfer rate is rather complex a few simple approximations

were proposed to model them. For instance, the dipole-dipole energy transfer proceeds with

the rate

W (r) =
C

r6
.
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In the case of single-channel electron transfer (without excitation of reaction products) the

rate obtained with the perturbation theory by Marcus is given by the formula:3,4

W (r) =
V 2

0

h̄
exp

(

−2(r − σ)

L

) √
π√

λkBT
exp

(

−(∆G + λ)2

4λkBT

)

, (8)

where V0 is the matrix element of the transfer, ∆G — its free energy, L is the tunneling

length, kB is the Boltzmann constant, and T is the temperature.

Here, it is assumed that the electron transfer assisted by the classical intra-molecular

mode and polar media requires the reorganization energy

λ(r) = λi + λ0(r), (9)

where λi = const is a contribution of an intra-molecular mode, while the second term, λ0(r),

accounts for the polar solvent reorganization. The latter is given by the well known formula:

λ0 =
e2

8πǫ0

(

1

ǫop

− 1

ǫ

)

(

1

rd

+
1

ra

− 2

r

)

, (10)

where ǫop = 1/n2 and ǫ are the optical and static dielectric constants, and ǫ0 is the permit-

tivity of free space. rd, and ra are the donor and acceptor radii, rd + ra = σ.

In the normal Marcus region (∆G < λ) the rate (8) is often approximated with expo-

nential model:3

W (r) = Wce
−2(r−σ)/l (11)

or contact model applicable for atom or proton transfer:

W (r) =
k0

4πσ2
δ(r − σ) . (12)

In contact approximation Eqs. (4) reduce to the following form:5

k(t) = k0n(σ, t) , ṅ = D∆n , 4πDr2 ∂n

∂r

∣

∣

∣

∣

∣

r=σ

= k0 n(σ, t) , (13)

which gives the well known Collins-Kimball formula for the reaction rate:

k(t) =
k0kD

k0 + kD

(

1 +
k0

kD

exerfc
√

x

)

, (14)

where x = (1 + k0/kD)2Dt/σ2 .

The transfer rate in the inverted Marcus region (when ∆G > λ) has the form very

different from exponential. It can be approximated by the following bell-shaped function

which allows analytical solution of the Equation (4) (see Ref.6):

W (r) =
W0

cosh2
(

r−R
∆

)
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B. Unified Theory of photochemical charge separation

The Unified Theory of photochemical charge separation11,12 gives the unified description

of both bimolecular ionization and geminate recombination reactions. The reaction scheme

is as follows:
D∗ + A −→ [D+ . . . A−]

φ−→ D+ + A− ,

↓ τ ↓WR

D . . . A

The first stage of the process is bimolecular ionization considered in the previous sub-

section. As the ions are born, they may either approach each other and recombine to the

ground state with the recombination rate WR or be separated and go free to the solvent.

The quantum yield of the free ions is denoted as φ on the above scheme.

The time evolution of the distribution of radical ion pairs m(r, t) is described by the

following equation:

ṁ(r, t) = WI(r)n(r, t)N∗(t) +
1

r2

∂

∂r
D̃r2erc/r ∂

∂r
e−rc/rm−WR(r)m (15)

The first term on the right hand site of the equation is the source term of the ions created

by bimolecular ionization. The quantities WI , n(r, t), and N(t) are defined in Eqs. (2) and

(4). The second term is the diffusional motion of the ions with the diffusion coefficient D̃

which can be different from the diffusion coefficient of neutral reactants, D. rc is the Onsager

radius of the Coulomb attraction. The third term describes geminate recombination of ions

with the recombination rate WR.

The initial and boundary conditions are:

m(r, 0) = m(∞, t) = 0 ,
∂

∂r
m(r, t)

∣

∣

∣

∣

∣

r=σ

= 0.

The total ion density P (t), and the free-ion quantum yield φ are defined respectively as:

P (t) = c
∫

m(r, t)d3r , φ = P (∞).

C. Spin multiplicity

It was recognized long ago that in the pairs of radicals or ion-radicals the recombination

is affected by spin conversion between initially populated and other spin states. The pair

of radicals created in either of its singlet or triplet states can recombine from there in the

singlet or triplet products or be separated with the quantum yield φ, so the recombination

scheme becomes:
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φt D + 3A∗
W T

R←− 3[Ḋ ... Ȧ] −→ Ḋ + Ȧ (16a)

T−1
tr l Ω φ

φs D + A ←−
W S

R

1[Ḋ ... Ȧ] −→ Ḋ + Ȧ . (16b)

Here, φs, and φt are the yields of the singlet and triplet recombination products respectively.

Ttr is the transversal relaxation time assumed to be the same in both radicals and Ω is the

rate of transitions between the spin states. In case of ∆g mechanism of spin conversion in

pairs of radicals having different g factors, the Ω is given by:

Ω =
1

2
∆gβ0H . (17)

Here β0 is the Bohr magneton, ∆g = g+ − g− where g+ and g− are g-factors of radical ions

in a pair and H is the external magnetic field.

For a proper analisys of the photochemical transfer processes that include spin transi-

tions, the Eq. (15) is substituted by a system of similar equations, each for separate spin

component. If we collect all the spin components into a density matrix ρ of the radical pair,

the most general form of the system of UT equations will be:

∂ρ(r, t)

∂t
= ŝ(r, t) + L̂ρ(r, t) + L̂ρ(r, t)− Ŵ (r)ρ(r, t) , (18)

with a reflective boundary condition at the contact of radicals r = σ:

ĵρ(r, t)|r=σ = 0 . (19)

Here, ŝ is the sourse term of ions, L̂ is the operator diagonal in the Liouville space which

describes the relative stochastic motion of the radicals, while ĵ is a flux operator. As to L̂,

this is the Liouville operator which consists of the rates of the paramagnetic relaxation and

the spin transitions induced by the magnetic field. The rate operator Ŵ (r) represents the

radical recombination depending on distance between the radicals, r. The explicit form of

the operators depend on the particular model of spin transitions.

The yields are usually represented as follows:14,15

φ =
D̃

D̃ + Z
, φt =

Zt

D̃ + Z
, φs =

Zs

D̃ + Z
, (20)

where Zs and Zt are the efficiencies of recombination through singlet and triplet chan-

nels,respectively, while

Z = Zs + Zt

is the total efficiency of geminate recombination.

The magnetic field effect (MFE) is the dependence of the quantum yield of free ions on

the external magnetic field H. It is defined as:

M(H) =
φ(H)− φ(0)

φ(0)
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II. MAIN GOALS

Although the bases of both the Differential Encounter Theory (DET) and the Unified

Theory of photochemical charge separation (UT) had been established, the theories did not

get necessary experimental verification. There were two reasons for that:

• Old experimental equipment did not allow thorough study of forward and backward

electron transfer. Lack of devices for time resolved measurements impeded accurate

extraction of microscopic parameters of the reacting systems. This led to incorrect

interpretation of the results and even to paradoxes. One of the examples is the paradox

of unphysically large value of the tunneling length resulted form underestimation of

the non-stationary stage in the kinetics of fluorescence quenching.16,17 This paradox

has been resolved in our published work17.

• DET and UT themselves were not developed enough to deal with real complex pho-

tochemically reacting systems. The transfer rate was modeled as either contact or

exponentially decaying with inter-particle distance. The dynamics along the reaction

coordinate was not incorporated into the theories. Spin conversion was described as a

stochastic process with a certain rate of transitions between the spin states.

Recent progress in experimental technology permitted more detailed study of electron

transfer reactions. Such techniques as single photon counting and fluorescence up-conversion

allowed the analysis of kinetic data in nano-second and even in sub-picosecond scales. Old

simplified approaches proved to be too rough to describe the newly obtained data.

The main goal of our recent works was the development of the encounter theories and

their implication for the fitting to real experimental data. Our research involved collabo-

ration with experimental groups from the USA (Prof. Fayer Group, Stanford University,

Switzerland (Vauthey Research Group, the University of Geneva) and Austria (ESR & Pho-

tochemistry Group, Graz University of Technology), and theoretical groups from Russia

(Prof. A. I. Ivanov Group, Volgograd State University, Prof N. Lukzen, International To-

mography Center, Novosibirsk), and Israel (Prof. Ilya Rips, Holon Institute of Technology).

Together with Fayer group we applied DET to the analysis of ionization kinetics of

Rhodamine 3B quenched by N.N-dimethyleaniline in seven solvents with different viscosities.

Our work showed why previous analyses of experimental data with DET have yielded distance

dependences of electron transfer that are much too long range. We found that it was the

neglect of non-stationary stage that used to lead to wrong extraction of reaction radii and

tunneling length from the experiment.

In our joint works with ESR & Photochemistry Group from Graz University of Technology

(Austria) we used the UT to fit the data obtained for photo-excited perylene quenched by
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aromatic amines in dimethylsulfoxide-glycerol mixtures. Our goal was the explanation of

the Angulo Effect18 — the non-monotonous dependence of recombination efficiency on the

inter-ion diffusion.

Our works with Vauthey Research Group, (the University of Geneva) were devoted to

the analysis of their data on the fluorescence dynamics of perylene in the presence of tetra-

cyanoethylene in acetonitrile as well as the data on the recombination dynamics of ion pairs

generated upon electron transfer quenching in the same system. Our goal was the explana-

tion of unexpectedly low yield of survived ions. Our work has called for detailed study of

the energetic scheme of the system and we had to extend the UT to explicitly account for

reaction coordinate dynamics.

The other goals of our research were:

• Further development of UT for a proper description of the radical ions with different

spin states in arbitrary large external magnetic fields. In particular, we wanted to spec-

ify the limits of applicability of previously known incoherent and rate theories3,14,20–24

• The determination of the spatial dependence of the transfer rate W (r) (see Eq.8) for

arbitrary large matrix element V of the transfer, and for both normal and inverted

Marcus regions.

The results are discussed in the subsequent sections.
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III. LUMINESCENCE QUENCHING BY ELECTRON TRANSFER

A. Transient effect

As far as we know, the first experimental inspection of the RQ(D) dependence launched

by a joint team of experimentalists and theoreticians was presented in Ref16. The fluorescence

quenching of pheophytina by toluquinone was studied in a number of different pure solvents

having viscosities that were either known or measured. The effective quenching radius was

found assuming that only steady state quenching could be detected experimentally. However,

the best fit of the theoretical dependence of RQ(D) to the data gave the unsatisfying results.

It gave the abnormally large value of the tunneling length, l = 5.4Å — much larger than any

reasonable value that should be 1 to 2 Å. Two other attempts were undertaken to correct

this result by changing the form of the transfer rate’s spatial dependence.6,25 Only in the

last of them6, a reasonable reduction of l was obtained by assuming that W (r) has a bell

shape with its maximum shifted far from contact. This is possible, but only in the inverted

Marcus region. In the normal region, where the exponential approximation (11) works well,

the problem of physically unreasonably large tunnelling lengths remained unsolved.

In our work17, where we studied photoinduced intermolecular electron transfer between

Rhodamine 3B and N,N -dimethylaniline in a series of seven liquids, we solved the paradox.

We found that a systematic mistake was made when the quenching kinetics were considered

to be exponential, that is the rate of the decay is constant. However, in reality, this is never

the case.

Fig. 2 in the Ref.17 demonstrates the fit of non-stationary electron transfer kinetics to the

experimental data obtained in propylene glycol, the most viscous solution studied in Ref.19.

The kinetics was fitted for a few different concentrations by the following formula:

− ln P (t) = − ln N/ ln N |c=0 = 4πcRQDt + 8cR2
Q

√
πDt , (21)

which is actually
t
∫

0
kI(t

′)dt′ under diffusional control. This relationship allowed us to find

RQ, and the tunneling length L. It is easy to see from the Fig. 2 in the Ref.17 that the

fitting, which accounts for the non-stationary quenching, is much better than the estimate

of the steady state rate from the tangent to kinetic curve as it used to be done in previous

works. Even at the end of the available interval, the data are steeper than the line, ln P =

−c4πRQDt, the slope of which is the true stationary rate ck.

The fitting gave us reasonable value of the tunnelling length L = 1.65Å, which does not

exceed earlier reports.26 In rigid structures, tunnelling over long distances was sometimes at-

tributed to the super-exchange, through molecular intermediates (like in molecular wires).27

However, in liquid solutions the inter-molecular electron transfer is expected to be shorter
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than intra-molecular transfer. When the intermediates are mobile solvent molecules, the

coherence of transfer is broken, and super-exchange becomes ineffective.28

In our work17, we fit the non-Markovian quenching theory to nonstationary experimental

kinetics to find a single quenching radius RQ for each of the solvents. For fast diffusion, the

viscosity dependence of RQ obeys the Collins-Kimball equation (see Eq (3.3)), permitting the

determination of the CK parameters: the kinetic rate constant k0 and the phenomenological

reaction radius R. However, the CK model does not describe the RQ(D) dependence over the

full range of viscosities studied. The more general dependence obtained by means of DET

for exponential WI(r) covers a much larger range of viscosity variation. From the fitting of

this dependence to the experimental one, more reasonable parameters of the exponential rate

and the tunnelling length l = 0.85Å are obtained. The latter can be easily related to the true

tunnelling length L of the Marcus formula for WI(r), which is not exactly exponential. The

true tunnelling length is found to be only twice as large as l which is reliable and compatible

with others obtained earlier for intramolecular electron transfer. Thus, the theoretical results

presented in Ref.17 resolve the problem of unphysical long-range tunnelling that came from

the analysis of an earlier experimental study of electron transfer in liquids.

B. Kinetics in the picosecond regime

The system studied in our previous article was recently subjected to a new investigation

by Fayer experimental group but with another technique and in a few new solvents29. The

main difference was that instead of a single-photon counting used earlier, now the fluorescence

up-conversion was employed allowing more accurate study of the first 450 ps of the quenching

kinetics. Contrary to the previous investigation which was based on the long time asymptotic

behavior (up to 4 ns), now only the short time initial quenching was available for study but

with a much better accuracy and shorter excitation pulse.

First of all it made absolutely inapplicable the previously used methodology. Therefore,

in our next work30, we had to change our strategy: instead of the long time asymptotic

behavior (21) we turned our attention to the alternative, short time quenching. From the

initial quenching rate we extracted the kinetic constant (Fig. 1 in the Ref.30) as a convolution

of the Marcus electron transfer rate and the equilibrium pair distribution of reactants:

kI(t) =
∫

WI(r)n(r, t)d3r −→t→0

∫

WI(r)g(r)d3r = kc (22)

From the best fit of the experimental data, the absolute value of the space dependent

Marcus rate was specified, as well as its contact value in solvents of different viscosity.

Employing the well defined Marcus rate, we fitted the whole kinetics of energy quenching

by electron transfer varying only the diffusion coefficient and tunneling length (Fig. 4 in
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the Ref30). Comparing the results with the popular contact approximation5, we found it

inapplicable to the system under consideration (Fig. 8 in the Ref30). On the contrary, the

encounter theory of remote electron transfer allowed not only to reproduce all the experi-

mental findings but also to predict the fluorescence yield concentration dependence, as well

as that of the Stern-Volmer constant.

Moreover, we found that kc, as well as V0 was not a constant but increased with D being

inversely proportional to viscosity. This was a surprise. The electron coupling, V0, is just a

static property of the contacting reactants that should not be affected by their motion. Such

a paradox could be qualitatively resolved only by taking into account the chemical anisotropy

of the reaction. This factor used to be ignored in the UT and IET of electron transfer3,14 but

had exhaustively been studied earlier by means of DET though in contact approximation.16

The averaging of the spherical anisotropy of the reaction by rotational diffusion, can explain

the increasing of the reaction rate in less viscous solvents where rotation is faster (Fig. 10

in the Ref30). The same is true for the corresponding effective value of V0.

12



IV. SPIN-LESS THEORY OF BIMOLECULAR IONIZATION FOLLOWED BY

HOT RECOMBINATION

A. Double channel highly exergonic ionization

In our work31 the fluorescence dynamics of perylene in the presence of tetracyanoethylene

(TCNE) in acetonitrile was studied experimentally and theoretically, taking into consider-

ation that the quenching is carried out by remote electron transfer in the Marcus inverted

region. It is well known that, TCNE allowed Rehm and Weller to get the most exergonic

points of their famous plot, though with other fluorophores.33 The quenching of perylene

also occurs deeply in the inverted Marcus region where |∆GI | > λ. At so high exergonicity,

the distance dependent transfer rate passes through the maximum shifted out of contact3, so

that even in the kinetic limit the reaction is remote, not to mention the diffusion controlled

ionization.

We presented a successful fitting of the entire kinetics of fluorescence quenching which

starts from the initial accumulation of excitations during the action of the light pulse (Fig.

5 in the Ref.31), extends to a kinetic electron transfer and ends by the final quasi-stationary

quenching (Fig. 8 in the Ref.31).

We found that the simplest single-channel Marcus rate, as well as its multiphonon analogs,

do not allow fitting satisfactorily both the initial and the final stages of quenching (Fig. 7

in the Ref.31). This can be done only if additional near contact quenching is added. The

origin of such an additional quenching may be attributed to parallel electron transfer to the

excited state of a cation radical as suggested in Ref.33 For our analysis we had to extend

the Differential Encounter Theory (DET) to the reactions of competing channels of electron

transfer of different energetic and space extent.

We also accounted for saturation of the ionization rate at short distances, where the

tunnelling can be so fast that the limiting stage becomes the diffusional motion along the

reaction coordinate to the crossing point.34,35 In polar solvents this is the so called “dynamical

solvent effect” limited by the longitudinal relaxation of polarization.36 Taking into account

this effect the single channel rate takes the following form:37,38

WI(r) =
U(r)

1 + U(r)τ
e−

(∆GI+λ)2

4λT = W0e
−

(∆GI+λ)2

4λT , (23)

where

U(r) =
V 2

0

h̄

√
π√

λkBT
exp

(

−2(r − σ)

L

)

. (24)

The upper limit of the rate, τ−1, is different for activationless (∆GI = 0)34 and highly

activated reactions (∆GI ≫ T )36, but we used the interpolation, which was reasonable

between these two limits where most of our experimental data falled:?
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1

τ
=

1

4τL

√

λ

πT
. (25)

Here τL is the longitudinal relaxation time of the solvent polarization which assists the

electron transfer.

Taking into account the saturation of the tunnelling due to the dynamical solvent effect

and having in hand an additional fitting parameter (the relative strength of the two channels),

we fitted satisfactorily the whole kinetics of quenching (Fig. 8 in the Ref.31).

Besides, the experimentally found concentration dependence of the Stern-Volmer constant

was well fitted with the same very parameters as the kinetic data. The contact approximation

applied to the same data was shown to be inadequate (Fig. 13 in the Ref.31).

Our results are in conflict with what was found when Tachiya and Murata fitted the free

energy Rehm-Weller dependence of the Stern-Volmer constant that they identified with the

stationary rate constant ki.
39 According to their Fig. 2 the transfer in the most exergonic

systems is kinetic, that is ki ≈ k0 (kinetic rate constant) at any time. Since our system is

one of those it should be expected that k0 is much less than the diffusional rate constant,

which is not the case. Being free in choosing the fitting parameters the authors made their

conclusion assuming that the matrix element of the transfer V0 = 12.4 meV . Making this

choice they greatly underestimate k0 which is in their work 42 Å3/ps, that is almost an

order of magnitude smaller than our value, 322.6 Å3/ps obtained experimentally. Found

ki = 31.6 ≪ k0 which clearly indicates that the ionization is very close to the diffusional

limit and rather far from the kinetic limit.

Thus, two important conclusions follow from this investigation:

• The energy quenching by TCNE in liquid solutions is controlled by diffusion.

• This is essentially distant, non-contact quenching.

These conclusions provide the unambiguous answer to the long standing question: why the

TCNE Stern-Volmer constant is placed on the diffusional plateau of the famous free energy

gap law of Rehm and Weller33, instead of being far below it as was expected.

The true value of the TCNE Stern-Volmer constant is at least twice as large as obtained

in the contact approximation and this difference increases with concentration (Fig. 14 in

the Ref.31). These facts show that the contact approximation is just a convenient method

of analytic calculations, but not a proper tool for fitting to the real experimental data on

transfer kinetics, especially under diffusion control and at high concentrations of quenchers.
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B. Hot recombination and separation of RIPs

In our subsequent work40, we consider the geminate recombination of ion pairs produced

by bimolecular photoinduced electron transfer (ionization) in the same system (Pe + TCNE).

The experiment gave us very surprising data on RIP kinetics and yield. The fraction of

survived ions was unusually small and this brought up a question, why ions recombine so

fast.

The study of the energetic scheme of this system (Fig. 1 in the Ref.40) led us to a

possible explanation of this effect via so called “hot recombination” which proceeds before

thermalization. It can be responsible for such a small yield of free ions. Hot recombination

is possible when the ions moving along the RIP-surface meet the intersection with ground

state energetic surface of neutral products before they reach the bottom of the well. Because

hot recombination does not need any thermal activation it is more efficient and much faster

than the subsequent thermal recombination that conventional UT had been confined to.

Since the hot transitions cannot be discussed in terms of the rate constant, their ap-

propriate description has called for an extension of existing theories of electron transfer

quenching in solutions to explicitly account for reaction coordinate dynamics. In the theory

we present, both the chemical dynamics and the mutual spatial diffusion of the reactants

have been taken into account. It should be noted that the spatial motion of the reactants

was not considered in previous investigations of hot transitions.41–46 In particular, in Ref.43

the average lifetime of the immobile ion pairs subjected to hot and thermal recombination

was calculated. On the contrary, we have considered the competition between both hot and

thermal recombination of the ion pairs and their diffusional separation.

With our theory we achieved a rather good fit of the RIP kinetics to the experimental

data in the 80 — 500 ps time window (Fig. 5 in the Ref.40). It was shown that, in the

present system, the vast majority of ion pairs have recombined through the hot channel

before they are equilibrated and start to recombine with the usual thermal rates. Almost

90% of the ion pairs recombine before equilibrium is reached and the subsequent thermal

recombination is accelerated by their encounter diffusion. As a result, no more than 6%

of their initial population are finally separated (at the acceptor concentration = 0.32 M).

Such a surprisingly fast back electron transfer proceeding through the hot channel was also

detected in Ru(II) − Co(III) mixed-valence complexes in butyronitrile.47 In this case as

well, less than 50% of the ion pairs generated by the excitation of the metal-to-metal charge-

transfer band avoid this recombination and reach the equilibrium. These examples show

that the study of any system should start from the inspection of its energy scheme to find

out whether the hot transitions are possible in this system. If this is the case, one should

care not only for thermal but first of all for the hot transfer as a dominant factor in the

charge recombination.
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Second new element of present consideration is connected with the fact that ionization

and recombination of the Pe-TCNE donor acceptor pairs are considerably affected by a

quantum high frequency mode. In the presence of such a mode the hot transitions proceed

in a number of vibrational repetitions of the term crossings. It was shown a quantum mode

to vastly enhance the hot recombination efficiency. As a result only ion pairs born with large

inter-ion distances have a chance to avoid hot recombination.

This is, to our knowledge, the first successful fit of a backward electron transfer kinetics

taking into account the hot recombination of photo-generated ion pairs.
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V. SPIN ASSISTED RIP RECOMBINATION

As it was recognized long ago in pairs of radicals or ion-radicals the recombination is

affected by spin conversion between initially populated and other spin states. Such a con-

version is carried out by the spin relaxation and/or some mechanisms acting in a magnetic

field. These are the ∆g-mechanism of spin-conversion in pairs of radicals having different

g-factors and the mechanism of the hyperfine interaction (HFI) between the electron and

nuclear spins.

A. Incoherent HFI-mechanism of spin-conversion

In Ref.15 we studied the system where the spin-conversion is provided by HFI mechanism

which is common for organic radical pairs. We developed the contact theory of geminate

recombination to the ground and triplet states. It substitutes the inappropriate “exponential

model” of such a reaction and differs from it by splitting the spin-forbidden transition into

sequential spin-conversion and recombination stages. The efficiencies of contact geminate

recombination to either ground or excited triplet state of neutral products were calculated

for contact and remote starts of radical ion pair initially created in singlet state.

Considering the spin-conversion in this pair as a stochastic process with given rate, the

diffusional dependence of recombination and charge separation yields and corresponding

efficiencies were specified. The obtained diffusional dependence was compared with the

experimental data obtained for photo-excited perylene quenched by aromatic amines in

dimethylsulfoxide-glycerol mixtures, which allow for a wide variation of solvent viscosity

with composition without changing the other parameters.

Actually, the description of the spin-assisted recombination we used for the fitting was still

in a very simplified form. The spin-conversion was taken into account assuming stochastic

transitions between the different spin states of RIPs. The averaging of quantum yields over

the true initial distributions was also avoided. The unique starting distance r was assumed to

remain constant although the average one shifts closer to contact with increasing diffusion.56

Moreover, even the contact approximation itself is too rough to deal with the closest starts

brought into narrow recombination layer (and leads to some unphysical results, which is

discussed in the paper). In view of all these simplifications, agreement between the theory

and experiment is surprisingly good indicating that the main features of the phenomenon

were nevertheless taken into account. It confirms that the spin-forbidden recombination is

composed of two sequential stages. Considering that the radical-ion pair is created in singlet

state, the spin conversion should precede its recombination to the excited triplet product.
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B. Account of remote nature of creation and recombination of radical-ions

In our subsequent paper48 we improved the fitting of the experimental data discussed

in previous subsection. First, we accounted for the initial space distribution of ions due to

distant photo-ionization. Second, we used distance dependent recombination rates instead

of simplified contact approximation.

Forward electron transfer proceeding with the space dependent ionization rate results in

some distribution of radical ion pairs over inter-ion distances which is farther from contact

the slower is the encounter diffusion of neutral reactants. The actual shape of the distribution

can be obtained with Differential Encounter Theory for any space dependence of the transfer

rate.11,12

The charge separation quantum yield ϕ̄ is then calculated as an average of partial yields

ϕ(r) of ions born at the distance r and is therefore different from ϕ(r0) for any fixed r0.

There is a similar difference between the yields of singlet and triplet neutral products,ϕs(r0)

and ϕt(r0), and their averaged values, ϕ̄s and ϕ̄t. The same is true for the corresponding

recombination efficiencies.

In particular, this means that the yield of photo-generated radical-ions is different from

that of the neutral radicals that are created at contact being the products of monomolecular

photo-dissociation.

Because the electron transfer either forward or backward is not contact, the ions are not

only born far from contact, but they also recombine distantly. Therefore the contact reaction

approximation widely used for heavy particles and proton transfer in liquids is too rough for

electron transfer. The shape and width of the remote transfer rates strongly affect the yields

of reaction products, changing essentially their diffusional dependence.

Using exponential reaction rates for both singlet and triplet channels we fitted the ex-

perimental data for recombination of ionized Perylene with aromatic amine counter-ions

(Fig. 10 in the Ref.48). In particular, the diffusional deceleration of the recombination was

explained. This unexpected effect obtained by Dr. Angulo was first given a proper interpre-

tation in Ref.18 using the rectangular model of the recombination rate, or its Marcus analog

in the deeply inverted region. This effect was attributed to the escape from the extended

recombination layer when the start is taken from inside it.18,51,52

Although the fitting was rather good there is still room for improvement. The exponential

models for the ionization and recombination rates should be substituted by the Marcus

formulae for these rates, which relate them to the true free energies of the reactions, as

well as to the reorganization energy in a particular solvent. The true hyperfine interaction

mechanism of spin-conversion should be substituted for the phenomenological rate model of

spin transitions in the RIP. The difference in size and encounter diffusion coefficients of ions

and their neutral precursors should be taken into account especially in polar solvents.
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Hopefully these improvements will enable the theory to correspond better with the fast

diffusion experiments and relate the spin-conversion rate to the true values of the hyperfine

interaction in particular radicals.

C. Incoherent ∆g-mechanism of spin-conversion

In our next article49 we turn to another conversion mechanism , assuming that it is

assisted by incoherent spin conversion executed by spin relaxation and the ∆g mechanism.

We studied the recombination and separation of the radical pair from its singlet and triplet

state. The spin conversion in a pair was considered as a stochastic (incoherent) process,

assuming that the recombination of both singlet and triplet radical pairs is contact. The

quantum yields of recombination products and free radical production were calculated for

any initial separation of radicals in a pair.

We presented a general solution for the problem of singlet radical pair recombination at

contact through one or two parallel channels. It reproduces all the efficiencies of contact

recombination obtained earlier within the rate description of spin conversion as well as their

diffusional and field dependencies. It was shown that the exact and rate treatment of the

problem lead to the results which are identical in the lowest order approximation in the

magnetic field. Our general results, valid at any initial separation of radicals in a pair, r0,

can be averaged over the initial distribution of these distances f(r0) if it is known.

The main restriction of our results is the stochastic (rate) description of spin conversion

in a non-zero magnetic field. It is justified if spin relaxation in compexes is much faster than

the difference between their resonance frequencies. This condition is met in a number of

transition metal complexes with strong spin-orbital coupling20,53,54, where T2 ≈ T1 ∼ 10 ps.

Quite the opposite is the situation with organic radicals whose spin relaxation is about a few

µs while the frequency of the hyperfine interaction responsible for spin conversion is higher

than the relaxation rates. This is the coherent conversion that was widely studied3,53,54,14, as

well as the magnetic field effects resulting from it. However, to the best of our knowledge all

these studies were confined to single channel recombination. The problem of double-channel

recombination assisted by coherent HFI-mechanism of spin-conversion has been done in

Ref.55 Coherent conversion assisted by ∆g-mechanism has been successfully solved in our

next work50 which is discussed in the next subsection.

D. Coherent ∆g-mechanism of spin-conversion

In Ref.50 we continue the study of the contact recombination from both singlet and triplet

states of a radical pair, assuming that the spin conversion is carried out by the fast transversal
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relaxation and ∆g-mechanism. Here we did not confine to small external magnetic field but

consider an arbitrary large field, allowing the spin conversion to be coherent. The alternative

HFI mechanism was neglected as being much weaker.

The magnetic field dependent quantum yields of the singlet and triplet recombination

products, as well as of the free radical production were calculated for any initial spin state

and arbitrary separation of radicals in a pair. The Magnetic Field Effect (MFE) was traced

and its diffusional (viscosity) dependence was specified.

The best analytical solution of this problem valid at any magnetic field was obtained by

Mints and Pukhov57, but only for a single channel recombination of a radical pair (RP)-

just from its singlet state to the ground state of the product. Unfortunately the authors

did not present the evaluation of their results and to generalize them for the double-channel

recombination we have to derive everything from the very beginning.

The results were compared to previously known incoherent and rate theories (See

Ref.3,20,14,21–24) which can be viewed as particular cases of our more general theory (Fig.

4 in the Ref.50). The main weakness of the rate theories is that they first reduce the co-

herent spin conversion to incoherent with the motion of radicals switched off, and only then

account for the encounter diffusion and recombination of radicals. When afterwards the

motion of radicals is accounted for, their recombination is affected by the spin conversion,

but the recombination itself no longer affects the spin conversion.

Instead, we did quite the opposite: we first solved the problem with simultaneously taking

into account the relative motion and conversion and only then turned to the particular

case where the latter is incoherent. In particular, we proved that the rate model of spin

conversion is not appropriate at any field. It becomes exact only in zero field, provided the

spin relaxation times are equal. In this particular case, the diffusional dependence of all the

yields coincides with the exact one and may be used for discrimination between the channels.

The only limitation of our theory is the contact approximation for distant recombination

rates. It can be overcome by numerical calculations provided that the distance dependence

of the rate is known.
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VI. SPACE DEPENDENCE OF THE TRANSFER RATE

The electron transfer rate is a fundamental property used in the theories of intra-

molecular and inter-molecular reactions in dense media.3,14,58,61 It is known to obey the

Arrhenius equation:

W = k(V, γ) e−(U−V )/kBT , U =
(∆G + λ)2

4λ
,

where V is the rate of resonant tunnelling and γ is the friction along the reaction coordinate.

The main problem is the evaluation of the pre-exponential factor, k(V, γ). It can not be

solved universally within a single theory. A number of theories have been proposed35,62–64.

Each of them describes k in a particular subregion of the two-dimensional domain (V, γ),

separately for normal and inverted Marcus regions . In each subregion the expressions for k

differ from one another. However, the variation of V (r) with interparticle distance can be

very large, changing from one subregion to another. This, requires that the bridges between

all these theories should be established and interpolating formulas for k(V, γ) should be found

and used for the fitting of experimental data.

The r-dependence of V (r) is

V (r) = V0e
−

r−σ

L ,

where L is the tunnelling length. The tunneling determines the level splitting 2V at the

crossing point of the diabatic energy levels. The transfer is non-adiabatic at large distances

where the splitting is small but becomes adiabatic at contact if the coupling there is strong

enough. In between it passes through the so called Dynamic Solvent Effect (DSE), when

the transfer is limited by diffusion along the reaction coordinate to the crossing point.65,66

Zusman proposed the formula that sewed together the perturbation theory and DSE.65 The

latter becomes the upper limit of the transfer rate achieved at the largest MaxV = V0.

The DSE was obtained and studied a lot of times in the intramolecular transfer and in

the solid state.67–74 However, it was common until recently to use mainly the perturbation

theory in the theories of electron transfer in liquids presuming that V0 is small enough.3,14

However, the precise fitting of transfer kinetics showed us that the true V0 is rather large

(57 meV) and would have to take the DSE into account.31,40 Now we think that this isn’t

enough.

A. Normal Marcus region

In our work59 two competing theories were used for bridging the gap between the non-

adiabatic and deeply adiabatic electron transfer between symmetric parabolic wells. For the

high friction limit a simple analytic interpolation was proposed as a reasonable alternative to
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them, well fitted to the results of numerical simulations. It provided a continuous description

of the electron transfer rate in the whole range of variation of the non-adiabatic coupling

between the diabatic states. With an increase in coupling the cusped barrier transforms

into the parabolic one. Correspondingly, the pre-exponent of the Arhenius transfer rate first

increases with coupling, then levels off approaching the “dynamic solvent effect” plateau but

finally reduces reaching the limit of the adiabatic Kramers theory for the parabolic barrier.

These changes proceeding with a reduction in the particle separation, affect significantly the

spatial dependence of the total transfer rate. If V0 is large then, as the exact rate approaches

the contact distance, it becomes smaller than in the theory of dynamical solvent effects and

much smaller than predicted by perturbation theory (golden rule), conventionally used in

photochemistry and electrochemistry.

The necessity to match the Fermi Golden Rule and Kramers high friction theory, including

DSE which separates them, was recognized long ago. At first it was realized by Zusman36,

then it appeared in the well known Calef and Wolynes work75 and then by means of the Eli

Pollak’s “Variational Transition State Theory” (VTST).76–79 We rely upon these approaches

to the problem at hand.

On a particular example of the resonant electron transfer, we have demonstrated that

the Zusman account for the dynamical solvent effect is insufficient for determination of

the transfer rate if electron coupling at contact is too strong. Zusman’s expression was

generalized using the original interpolation between DSE and the adiabatic Kramers limit

for high friction. The same was done for moderate values of the friction using two theories

of diffusion controlled electron transfer.75,78 The model we proposed allows specifying the

continuous distance dependence of the transfer rate from the infinite reactant separation

and up to their closest approach where the maximal electron coupling is reached.

Although our analysis is quantitative only for the resonant transfer (with energy gap

∆G = 0) it is qualitatively valid in the normal region (−∆G < λ) provided the transfer

barrier

U =
(∆G + λ)2

4λ

does not differ significantly from λ/4.

B. Inverted Marcus region

In Ref.60 the space dependence of electron transfer rate in deeply inverted Marcus region

was calculated taking into account the adiabaticity of the process at strong coupling near the

contact. The result is qualitatively similar from that obtained earlier for resonant electron

transfer.59 The transfer rate is non-monotonous, bell-shaped with a maximum shifted far

from the contact.
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Taking a few competing theories of activated electron transfer in inverted Marcus region80

we bridged the non-adiabatic, solvent controlled and deeply adiabatic transfer. We proposed

a simple analytical interpolation between these theories which provides a continuous descrip-

tion of the electron transfer rate at any non-adiabatic coupling between the diabatic states.

When coupling increases with shortening of inter-particle distance the pre-exponent of the

Arrhenius transfer rate first increases being quadratic in coupling, then levels off approach-

ing the “dynamic solvent effect” (DSE) region and finally is cut off exponentially due to

adiabaticity of the transfer.

These changes affect significantly the spatial dependence of the transfer rate near the

contact provided the coupling there is strong. The rate reduces when the distance between

the reactants decreases being strongly suppressed adiabatically near the contact. It is much

smaller then the perturbation (golden rule) and even DSE results. The latter is actually

unattainable anywhere if contact tunneling is really strong. The transfer rate is a bell-

shaped curve adiabatic and non-adiabatic on the opposite sides and sensitive to the friction

(DSE damping) only in between, near the maximum.
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VII. CONCLUSIONS

As it follows from previous sections of this report, most of the problems announced in

my PhD proposal and interim report has been successfully solved. Some of these results

were presented at the Workshops on Diffusion Assisted Reactions in Graz University of

Technology (August, 2004), and in Novosibirsk Tomography Centre (August 2006), at the

Spin Chemistry Meeting 2005 in St. Johns College, Oxford, UK (September 2005), and at

the Israel Chemical Society meeting in Tel-Aviv (February 2006).

There are a few important conclusions:

• The kinetics of ionization quenching should be studied taking into account its non-

stationary nature even at long times. Neglecting the non-stationary stage leads to

overestimation of the effective reaction radius and tunneling length.

• The contact approximation of the reaction rate is just a convenient method of analytic

calculations, but not a proper tool for fitting the real experimental data on transfer

kinetics and quantum yields of its products, especially under diffusion control, at high

free energies of the transfer.

• The study of the recombination of radical-ion pairs should start from the inspection of

its energy scheme to find out whether the hot transitions are possible in this system. If

this is the case, one should care not only for thermal but first of all for the hot transfer

as a dominant factor in the charge recombination.

• The popular model that considers the spin conversion as an incoherent rate process is

exact only at zero magnetic field, provided the spin relaxation times are equal. This

model is not appropriate at high fields where coherent description of spin dynamics

should be used instead.

• The transfer rates employed in Encounter Theories should take into account the effects

of reaction coordinate dynamics especially when tunneling is so fast that the diffusional

motion along the reaction coordinate to the crossing point of the energy levels becomes

the limiting factor.

Currently we are working on fitting the new experimental data on kinetics of ioniza-

tion and recombination of photo-induced ions in the system studied earlier by us and Fayer

group19,17. We are employing Encounter Theory that accounts for the motion along both

spatial and reaction coordinates. This is going to yield more detailed description of photo-

chemical transfer reactions in liquid solutions, and provide methods of accurate extraction

of basic physical quantities associated with the transfer processes.
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Influence of Diffusion on the Kinetics of Donor-Acceptor Electron Transfer Monitored by
the Quenching of Donor Fluorescence

V. S. Gladkikh,† A. I. Burshtein,† H. L. Tavernier, ‡ and M. D. Fayer*,‡

Department of Chemical Physics, Weizmann Institute of Science, 76100 RehoVot, Israel, and
Department of Chemistry, Stanford UniVersity, Stanford, California 94305

ReceiVed: March 14, 2002; In Final Form: May 8, 2002

The problem of photoinduced donor-acceptor electron transfer in liquid solution is analyzed to obtain an
understanding of the relationship between approximate treatments of the role of diffusion in electron transfer,
that is, the Collins-Kimball approach, and a detailed analysis of the problem. It is shown why previous
analyses of experimental data have yielded distance dependences of electron transfer that are much too long
range. From an appropriate fitting of the nonstationary kinetics of donor fluorescence quenching by diffusion-
assisted electron transfer, the effective radii and the steady-state constants associated with electron transfer
are found for a donor-acceptor system studied experimentally in seven solvents with different viscosities.
The dependence of diffusion agrees with the one predicted theoretically for electron transfer having a distance-
dependent transfer rate initially taken to be exponential with distance. In the fast-diffusion limit, the dependence
on the rate of diffusion is well approximated by the Collins-Kimball relationship, which permits the kinetic
rate constant and the effective radius associated with diffusion-induced quenching to be extracted from the
experimental data. The effective radius is then related to the electron transfer rate with arbitrary distance
dependence. From this relationship, the tunnelling length for both exponential and Marcus-type rates is obtained
from the data analysis, and it is demonstrated that the latter is almost twice as long as the former. For the
Marcus transfer rate, it is found that the Marcus parameterâ ) 1.2 Å-1 (â ) 2/tunnelling length), which is
in accord with previous measurements on a variety of systems. The theoretical analysis presented here resolves
the apparent discrepancies between early measurements of very long tunnelling lengths in liquid systems and
physically reasonable values ofâ ≈ 1 Å-1.

I. Introduction

One of the simplest bimolecular reactions in liquid solutions
is the impurity quenching of an excited donor D* by charge
transfer to electron acceptors A. The competition of the
excitation decay with the diffusion-assisted electron transfer is
represented by the following reaction scheme

whereτ is the donor excited-state lifetime in the absence of
acceptors. The energy dissipation is often described by con-
ventional (Markovian) chemical kinetics, represented by a single
equation for the excitation densityN ) [D*]

wherec ) [A] remains constant if acceptors are present in great
excess. Under this condition, the quenching proceeds exponen-
tially with the time-independent ratecki and the rate constant

whereD ) DD + DA is the coefficient of encounter diffusion
andRQ is the effective radius of the reaction.

In the classical theory of bimolecular reactions,1,2 the transfer
proceeds with a kinetic rate constantk0 in a thin layer adjacent
to the contact sphere of radiusσ. In this case, the effective radius
is related to the external radius of the reaction layer,R, according
to the Collins-Kimball (CK) relationship:

RQ increases with viscosity but cannot exceedR. In the original
CK theory, the reaction layer was assumed to be infinitely thin;
therefore,R ≡ σ. This is actually a contact model of transfer
reactions. Later,R came to be regarded as a fitting parameter,
partially accounting for the remote nature of transfer, but only
for R - σ , σ.

Evidently, both the contact and generalized CK models of
electron tunnelling are simplifications that are too rough to
describe real transfer that is governed by the distance-dependent
tunnelling rate,WI(r). Much better, though not perfect, is an
exponential model of this dependence:

It is often assumed that the rate decreases exponentially with a
characteristic tunnelling length,l. It is possible to obtainl in
some circumstances from experimental studies of intramolecular
electron transfer.3,4 In the case of intermolecular transfer assisted
by diffusion,l can be obtained only indirectly from experiments

* Corresponding author. E-mail: fayer@stanford.edu.
† Weizmann Institute of Science.
‡ Stanford University.

RQ ) R
k0

k0 + 4πRD
(1.4)

WI(r) ) Wce
-2(r - σ)/l (1.5)

D* + A f D+ + A- (1.1)

Vτ

Ṅ ) -kicN (1.2)

ki ) 4πRQD (1.3)
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through the rate constants related toWI(r) by the theory of
distance-dependent electron transfer in liquid solution.

Early theoretical treatments, presented almost simultaneously,
were developed intuitively5 but were justified in terms of a
binary approximation in ref 6. Not only the rate processes but
also the dynamic transfer governed by the Hamiltonian were
studied using the approach called encounter theory (ET).7 At
present, the method is better known as differential encounter
theory (DET), which can be deduced, in some limits, from the
more general integral encounter theory.8 DET permitted calcula-
tion of the RQ(D) dependence for the exponential rate5 and
proved that the CK model, withR ≈ σ, is valid in the fast-
diffusion limit.7 However, for slower diffusion (higher vis-
cosity), the steady-state constantki ) 4πRsD, whereRs > R.
The dependence on diffusion forRQ was given in a number of
papers:7,9,10

whereγ ) exp(C) andC is the Euler constant.
The effective quenching radius,RQ, is a liquid analogue of

the reaction cross section in gas-phase kinetics. The specification
of the dependence on the diffusion ofRQ(D) is the main
achievement of DET. This dependence plays an important role
in chemical kinetics of liquid-state reactions, which is the same
role as the energy (velocity) dependence of the gas-phase
reaction cross section. The gas-phase reaction cross section is
the subject of numerous theoretical studies and related cross-
beam experiments. However, the variation of molecular veloci-
ties in the beams is more readily accomplished than is changing
the mobility (diffusion) of particles in liquid solutions. Changing
the diffusion can be done in a very limited range by varying
the solvents or their compositions or by using external pressure,
which changes the viscosity of the solution. However, any of
these methods can affect not only diffusion but also other
properties of the media (solvation, polarity, refractive index,
etc.).11 Whenever the experimental difficulties were overcome,
new and very important results were obtained.12-14

As far as we know, the first experimental inspection of the
RQ(D) dependence6 launched by a joint team of experimentalists
and theoreticians was presented in ref 13. The fluorescence
quenching of pheophytin a by toluquinone was studied in a
number of different pure solvents having viscosities that were
either known or measured. The diffusion coefficients obtained
from the Stokes-Einstein relationship vary in the series of
solvents studied by 2 orders of magnitude. The effective
quenching radius,RQ ) ki/4πD, was found by assuming that
only steady-state quenching could be detected experimentally.
However, the best fit of the theoretical dependence ofRQ(D) to
the data gave the following unsatisfying results:13 Wc ) 1.8 ×
1010 s-1,σ ) 4 Å, and l ) 5.4 Å. The last number is much
larger than any reasonable value for the tunnelling length, which
should be 1 to 2 Å. Two other attempts were undertaken to
correct this result by changing the form of the transfer rate’s
spatial dependence.15,16 Only in the last attempt16 was a
reasonable reduction ofl obtained by assuming thatWI(r) has
a bell shape with its maximum shifted far from contact. This
reduction is possible, but only in the inverted Marcus region.
In the normal region, where the exponential approximation5

works well, the problem of unreasonably large physical tun-
nelling lengths remained unsolved.

Unfortunately, until now no other attempts to resolve this
problem theoretically or experimentally were made. Only

recently, electron transfer in the normal Marcus region was
studied again in another system and in seven different solvents.17

However, the quenching kinetics that were measured much more
accurately were found to be nonstationary, that is, the evolution
of N(t) is not exponential; the rate depends on the time when it
is measured. The preliminary analysis of these results showed
that l is overestimated if the experiments are analyzed in the
same way as in ref 13. This overestimation stimulated the critical
analysis of the way in whichRQ should be extracted from the
experimentally studied kinetics. Here, we prove that a systematic
mistake is made when the quenching kinetics are considered to
be exponential, even at the very end of the available time
interval.

In our present study, we fit the non-Markovian quenching
theory to nonstationary experimental kinetics to find a single
quenching radiusRQ for each of the solvents. For fast diffusion,
the viscosity dependence ofRQ obeys the Collins-Kimball
equation (3.3), permitting the determination of the CK param-
eters: the kinetic rate constantk0 and the phenomenological
reaction radiusR. However, the CK model does not describe
theRQ(D) dependence over the full range of viscosities studied.
The more general dependence obtained by means of DET7 for
exponentialWI(r) covers a much larger range of viscosity
variation. From the fitting of this dependence to the experimental
one, more reasonable parameters of the exponential rate (1.5)
and the tunnelling lengthl ) 0.85 Å are obtained. The latter
can be easily related to the true tunnelling lengthL of the Marcus
formula for WI(r), which is not exactly exponential. The true
tunnelling length is found to be only twice as large asl and
gives the Marcus parameterâ ) 1.2 Å-1. This result is reliable
and compatible with others obtained earlier for intramolecular
electron transfer.3 Thus, the theoretical results presented below
resolve the problem of unphysical long-range tunnelling that
came from the analysis of an earlier experimental study of
electron transfer in liquids.

II. Nonstationary Energy Quenching

It is remarkable that in the theory of contact reactions first
developed by Smoluchowski,1 the limitations of the Markovian
approach were removed from the very beginning. The “time-
dependent” rate constant,kI(t), was substituted forki in the
kinetic equation (1.2). In the Collins-Kimball theory,kI(t) is
defined as follows:2

wherekD ) 4πRD is the diffusional rate constant andx ) (1 +
k0/kD)2Dt/R2. As a result, the survival probability of excitation
vanishes nonexponentially:

This effect is especially pronounced whenk0 . kD so that
the reaction is under diffusion control. The quenching always
starts with the maximal reaction rate constantk0 and then slows
down gradually, approaching a much smaller diffusional value,
kD:

From Figure 1, which demonstrates the evolution of the

RQ ) Rs≈ σ + l
2

ln(γ2Wcl
2

4D ) atRs . R (1.6)

kI(t) ) ki(1 +
k0

kD
exerfcxx) (2.1)

N(t) ) exp(-c∫0

t
kI(t′) dt′ - t/τ) (2.2)

kI(t) ) {k0 at t ) 0

kD(1 + R

xπDt) at t f ∞ (2.3)
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Collins-Kimball rate constant (2.1) in the full time domain, it
is easy to see that the CK rate constant is larger than the steady
state constant,ki, at any finite time, and the difference is more
pronounced the earlier they are compared.

From work done in the last decade, there is growing evidence
that fluorescence quenching by electron transfer is actually
nonexponential.18 In this and other studies19, the non-Markovian
Collins-Kimball theory2 was used to fit the experimental
kinetics from very short times to long times. However, this
manner of extracting quenching parameters from nonstationary
kinetics was deservedly criticized in ref 20 because there are
too many parameters to obtain reliable results. It should be added
that the electron transfer in the inverted region studied in ref
19 does not occur at contact at all, which makes the Collins-
Kimball theory inapplicable, at least at short times. Instead of
fitting all of the kinetics, the authors of ref 20 analyzed only
the long-time asymptotic behavior of the survival probability,
which is given by the well-known two term expression23

This expression accounts for the nonstationary diffusional
transfer for any free energy of reaction. Varying the solvent
viscosity by changing the external pressure, the authors provided
an example of how to obtain the kinetic constantk0 from the
Collins-Kimball model of theRQ(D) dependence. This constant
was found to be an order of magnitude smaller than that reported
in ref 19.

The kinetics at the shortest times can be somewhat smoothed
by excitation with a light pulse of finite duration.24,25However,
the subsequent nonstationary quenching is not actually perturbed
by excitation and is worthy of quantitative investigation. The
first term in eq 2.4 represents the steady-state quenching with
a diffusional rate constant of 4πRD, whereas the second term
accounts for the initial nonstationary quenching, which is faster.
Because of the second term, the long-time asymptote of this
process never becomes exponential in a strict sense. There is
the pseudo-Markovian asymptotic expression

but the pre-exponent permanently decreases with time:A )
exp(-8R2cxπDt). For this reason, one cannot obtain an
accurate estimate ofki by setting it equal to d lnP/dt at the
latest available time. If this derivativeckI(t) is identified with

the steady-state rate of quenching,cki, the rate constantki )
4πRQD and the effective quenching radiusRQ are overestimated.
This naive method of specifyingRQ was a source of systematic
error that led to abnormally large values of the tunnelling
parameter that was obtained in ref 13.

At even higher viscosities, when the electron transfer is
already under diffusional control, a noticeable difference appears
between encounter theory and the primitive contact model of
Collins-Kimball. This difference is usually attributed to the
remote nature of electron transfer described by either the
rectangular model ofW(r) proposed by Szabo26 or the expo-
nential approximation ofW(r) (eq 1.5).27,28 However, the best
alternative to any model is the true Marcus-type rate of trans-
fer, which is a product of both the tunnelling and Arrhenius
factors:29

Here,V0 is the tunnelling matrix element,L is the true tunnelling
distance, and∆Gi is the free-energy change associated with
electron transfer. The advantage of employing the true transfer
rate compared to using the CK model has been recognized in
ref 24, but an attempt to fit the nonstationary quenching kinetics
using eq 2.5 was launched by this group later.25 Unfortunately,
their choice of ethylene glycol as a more viscous solvent was
inappropriate for the reasons that were presented in ref 30 and
are confirmed here (see below). Other authors also appealed to
the MarcusWI(r),28,31,32though in the vast majority of earlier
works, the exponential approximation of this dependence was
used.7,29,33,34

In the next section, we show how the effective radiusRQ can
be properly found from the nonstationary kinetics of electron
transfer causing fluorescence quenching. Then the diffusional
dependence of this radius,RQ(D), will be used to specify the
main parameters of the CK model: the external radius of the
reaction zone,R, and the kinetic rate constant,k0. The method
for the extraction ofRQ is similar to the one proposed in ref 20,
but its utilization here is different, and it is used to investigate
not only the CK model but also the results obtained for the
exponential transfer rate.

III. Extraction and Fitting of RQ(D)

The long-time diffusional asymptote of quenching (eq 2.4)
is actually a universal kinetic law, provided that the effective
radiusRQ is substituted forR:

When the concentration of quenchers in solution and the
viscosity are known (as well asD, which is given by the
Stokes-Einstein relationshipD ) kBT/6πση), RQ is the only
fitting parameter in eq 3.1. It is expected that for fast diffusion
RQ coincides with the Collins-Kimball radius (eq 1.4) but that
for slow diffusionRQ becomes identical toRs from eq 1.6.

In Figure 2, we demonstrate howRQ can be obtained from
the best fit of the two-term expression (eq 3.1) to the
experimentally measured lnP(t). P(t) ) N(t) exp(t/τ) ) N/N|c)0

is obtained from the measured kinetics of energy dissipation,
N(t), which is related to the same kinetics in the absence of
acceptors,N(t)|c)0. The initial discrepancy between these kinetic
parameters is natural and should be ignored.24,25The convolution
of the excitation pulse with system response makes the top of
a signal smoother whereas the long-time asymptote (eq 3.1)

Figure 1. Time dependence of the instantaneous rate constantkI(t)
compared to its asymptotic (steady-state) valueki in the contact theory
of diffusion-assisted electron transfer. Two parameters of the theory,
k0 andσ, are taken to be the same as in Figure 3. The vertical dotted
line in the inset indicates the upper bound of the time interval, which
was available experimentally, where the instantaneous rate constant is
still almost 70% larger than the steady state value.

ln P ) ln[N exp(t/τ)] ) -c[4πRDt + 8R2xπDt] (2.4)

P(t) f Ae-ckit

WI(r) ) V0
2 exp(-

2(r - σ)
L ) xπ

xλT
exp(-

(∆Gi + λ)2

4λT ) (2.5)

ln P ) -c[4πRQDt + 8RQ
2xπDt] at t . RQ

2/D (3.1)
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extrapolated into this region is sharper than the trueP(t). The
time interval of fitting is also restricted from above by noise,
whose relative value increases with time. However, even in a
limited time interval, the fitting, which accounts for the
nonstationary quenching, is much better than the estimate of
the steady-state rate from the tangent to the kinetic curve. Even
at the end of the available interval, the data are steeper than the
line ln P ) -c4πRQDt, the slope of which is the true stationary
ratecki.

In ref 20, reliable values of bothRQ and D were obtained
using an iterative nonlinear least-squares method with sophis-
ticated optimization of the fitted function. The time-zero shift
parameter was also adjusted in the analysis. KnowingD from
the separate measurements, we can do the same thing in a much
simpler manner by varying onlyRQ and using the vertical shift
of the whole curve as an adjustable parameter. An example of
such a fit is shown by the thick line in Figure 2. This procedure
was used to find reaction radii as well as the corresponding

steady-state rate constants

Some authors21,22 prefer to deal withki instead ofRQ. For a
fixed value ofD, it does not matter which of these is taken as
the primary fitting parameter. However,RQ is a more funda-
mental property of the transfer. The relationship of the value
of RQ to the contact distanceσ and the tunneling lengthl
contains a good deal of information about the transfer mecha-
nism. In addition, there are analytical estimates ofRQ for high
viscosities, for example, the one given in eq 1.6. For all of the
systems studied here experimentally, the results for bothRQ and
ki are summarized in Table 1.

It is common and convenient to represent the CK equation
(eq 1.4) as a linear relationship between inverseki and viscosity:

This relationship is expected to hold, at least in the low-viscosity
region where the contact approximation (R ≈ σ) is the most
reasonable. There is no contradiction in the fact that at smallD
some of our tabulated data deviate from the straight line (eq
3.3). The data need only approach the line asD f ∞. There,
1/ki f 1/k0, so the kinetic rate constant can be unambiguously
found from the intersection of the extrapolated straight line with
the ordinate (Figure 3). For the system under study,k0 was found
in this way:

With this value fork0 andR ) σ ) 6.87 Å taken from ref 17,
we plotted the corresponding CK straight line, but its slope is
somewhat too large to fit the experimental data well.

To improve agreement, the CK radius is often taken to be an
adjustable parameter:19,20,24

By changingµ, one changes the slope of the line representing
the Collins-Kimball relationship. Selecting the proper value
of µ permits the experimental data at low viscosities (in the
fast-diffusion limit) to be fit very well because the electron

Figure 2. Fit of nonstationary electron-transfer kinetics (thick curve)
to the experimental data obtained in propylene glycol, the most viscous
solution studied in ref 17. The thin line represents the tangent to the
kinetic curve at the longest time within the available interval. The
dashed, straight line is the purely exponential decay, with the steady-
state rate constantki ) 4πRQD obtained from the bestRQ value.

TABLE 1

solvent c (M) τ (ns) D (Å2/ns) RQ (Å) ki (Å3/ns)

0.033 4.000 21 991
1 acetonitrile 0.067 1.45 438 4.110 22 622

0.100 4.110 22 622

0.025 4.545 13 823
2 ethanol 0.050 2.07 242 4.545 13 823

0.075 4.545 13 823

0.050 7.000 3985
3 eth gly/ethanol 0.100 2.21 45.3 7.000 3985

0.150 7.000 3985

0.050 7.470 3078
4 glycerol/butanol 0.100 2.60 32.8 6.402 2638

0.150 6.646 2739

0.050 6.597 2388
5 pr gly/butanol 0.100 2.66 28.8 6.597 2388

0.150 6.597 2388

0.050 7.624 2702
6 glycerol/ethanol 0.100 2.34 28.2 7.624 2702

0.150 7.624 2702

0.050 8.125 819
7 propylene glycol 0.100 2.80 8.0 7.500 754

0.150 7.375 741

0.050 10.067 1885
ethylene glycol 0.100 2.38 14.9 10.067 1885

0.150 10.067 1885

Figure 3. Dependence of the steady-state rate constant on diffusion.
The points taken from Table 1 are interpolated by a thick line
representing the theoretical dependence for the exponential transfer rate
with l ) 0.85 Å. The thin, straight line plots a contact approximation
with k0 ) 5.13× 104 Å3/ns andσ ) 6.87 Å, whereas the dashed line
represents the Collins-Kimball result withµ ) 0.91. The higher and
lower values of the rate constants related to the same system but with
different concentrations are depicted here and in successive Figures
by empty circles.

ki ) 4πRQD (3.2)

1
ki

) 1
k0

+ 1
4πRD

(3.3)

k0 ) 5.13× 104 Å3/ns (3.4)

R ) σ/µ (3.5)
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transfer in this limit is really a quasi-contact, provided the thin
reaction layer is included in the reaction sphere of radiusR J
σ.28 The CK approximation works better the smaller the width
of the actual reaction layer,R - σ.

In the case of the exponential transfer rate (eq 1.5), this width
is approximatelyl/2. More accurately, it can be determined if
the predictions of the CK model are compared with the exact
solution obtained by means of encounter theory. In fact, the
exponential transfer rate has the privilege of being one of the
few models ofWI(r) that enables a rigorous solution of the DET
equations to be obtained. The solution results in the following
dependence on diffusion of the effective radius:7,29

Here

whereC is the Euler constant andK(x) and I(x) are modified
Bessel functions. By substituting eq 3.6 into eq 1.3, one can
easily deduce that

where

and

Becausek0 andσ are fixed, there is only a single free parameter,
l, that can be used for fitting.

In the data presented in Figure 3 (as well as in Figures 6 and
7), there are a few points in which somewhat different rate
constants were obtained for the three concentrations studied.
In such cases, we have plotted all of them with the higher and
lower values depicted by empty circles. Almost all points fall
on the theoretical curve (thick line) representing the exact
solution (eq 3.7) withWc fixed by the known kinetic constant
and the tunnelling length found from the best fit,

Only a single point for ethylene glycol marked by the crossed
circle is too low, but this system was recognized as exceptional
by experimentalists themselves. The reasons that it is so different
were discussed in a separate article.30 For the same reasons,
we excluded it from our fitting as well.

The exact result for exponentialWI(r) was reduced in ref 7
to the standard CK relationship withR ) σ (µ ) 1), which
appears in the zero-order approximation with respect toF. If
the higher-order corrections were included, thenµ < 1 would
be obtained. With the true value ofµ, the CK straight line fits
the data in the fast-diffusion region almost as well as the exact
curve (see Figure 3) does. To specify the slope of this line
theoretically, we have to find the generalµ(F) dependence by
means of DET. Therefore, in the next section, the CK relation-

ship will be rederived for an arbitrary functional form of the
transfer rate. Thenµ(F) will be found not only for the
exponential rate but also for the Marcus rate of electron transfer.
From the analysis with the Marcus rate, the true tunnelling
distance in liquids emerges.

IV. CK Approximation for Remote Electron Transfer

Although we obtained rather good agreement between the
experiment and theory on the basis of the exponential transfer
rate model (eq 1.5), this is not firm evidence that the distance
dependence is actually exponential. In the Marcus theory of
outer-sphere (solvent-assisted) electron transfer, the rate (eq 2.5)
contains the Arrhenius factor that depends on the distance. In
highly polar solvents, the free energy of transfer∆Gi ≈ a
constant, but the reorganization energyλ(r) slowly increases
with distance, approaching twice the contact value, 2λc:29

In the normal Marcus region (∆Gi < λc), this effect significantly
reduces the Arrhenius factor near the contact, though at large
distances this factor approaches a constant. As a result,WI(r)
can be approximated by exponential functions, but near contact
and far from it, they have different decrements. The former
(2/l) is larger then the latter (2/L), which is expressed through
the true tunnelling lengthL:

Here, we have

In Figure 4, the functions given in (eq 4.2) are compared with
the true nonexponential Marcus rate in the normal region (∆Gi

) -0.59 eV,λc ) 1.3 eV). As was expected, the Marcus rate
near the contact decreases much faster than does its exponential
asymptote at large distance. The long-distance asymptote
contains the true tunnelling parameterL, which is almost twice
as large as thel value used above to obtain the best fit to the

RQ ) σ + l
2[ln(γ2âm) + 2θ(âm,

2σ
l )] (3.6)

θ(x, y) )
K0(2xx) - yxxK1(2xx)

I0(2xx) + yxxI1(2xx)
âm )

Wcl
2

4D

γ ) eC ≈ 1.781

ki ) 4πσD + 2πlD[ln(γ2âm) + 2θ(âm,
2σ
l )] (3.7)

âm )
k0F

8πσD(1 + F + F2/2)
F ) l /σ

k0 ) ∫σ

∞
WI(r)4πr2 dr ) 2πWcσ

2l(1 + l /σ + l2/2σ2) (3.8)

l ) 0.85Å (3.9)

Figure 4. Distance dependence of the Marcus transfer rate (eq 2.5) in
the normal region (∆Gi ) -0.59 eV) withL ) 1.65 Å andλc ) 1.3
eV (thick line) in comparison to its exponential approximations for
short (dotted line) and long (dashed-dotted line) distances.

λ(r) ) λc(2 - σ/r) (4.1)

W ) {Wce
-2(r - σ)/l at r ≈ σ

W∞e-2(r - σ)/L at r . σ
(4.2)

Wc )
V0

2xπ

xλcT
exp(-

(∆Gi + λc)
2

4λcT )
W∞ )

V0
2xπ

x2λcT
exp(-

(∆Gi + 2λc)
2

8λcT )
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experimental results. A more accurate relationship betweenl
andL will be established below.

Moreover, the effective width of the reaction layer can be
attributed to a nonexponential transfer rate provided that the
CK reaction constant’s dependence on diffusion (eq 3.3) can
be approximately identified with that derived by DET for
arbitraryWI(r). The derivation starts with the general definition
of the steady-state constant in DET:

This expression relateski to the arbitrary rate of transfer and
the steady-state pair distribution of reactants

whereñ(r, s) ) ∫e-stn(r, t) dt. The nonstationary distribution
n(r, t) is the solution of the diffusion equation:

Here,L̂ is the diffusion operator for nonreacting particles, and
g(r) ) e-U(r) is the initial equilibrium distribution for a pair of
reactants. The distribution is not homogeneous if there are
electrostatic or other interactions, which are represented by the
interparticle potentialU(r), but for U ) 0, we haveL̂ )
D

r2

∂

∂r
r2 ∂

∂r
andg ) 1.

The general solution of eq 4.5 can be expressed through its
Green function

that has a Laplace transform that obeys the known integral
equation35

Here, G0(r, r0, t) is the Green function for diffusive motion
without reaction, which obeys the much simpler differential
equation

It has the following general property following from the
stationary nature ofg(r) ) ∫G(r, r0, t) g(r0) d3r0 :

Using this property after the integration of eq 4.7 overr0 with
the weightg(r0), we obtain

After inserting this result into eq 4.4, we get the final integral
equation for the desired stationary distribution:

Equation 4.11 can be further simplified using the well-known
Green function for free diffusion of charged reactants:35

rc ) q2/εkBT is the Onsager radius.
For neutral reactants (q ) 0) or highly polar solvents (ε .

1), one can takerc ) 0 andg(r) ) 1. Inserting the simplified
Green function into the general equation (4.11) reduces eq 4.11
to

The first integral in this expression describes the large distance
asymptote, whereas the second integral determines the contact
reduction of the particle density:

R ) ∫0
∞WI(r0) ns(r0) r0 dr0. The asymptote at larger is very

general and is well-established7, whereas the contact reduction
depends on the model of the transfer rateWI(r) and is more
pronounced the slower the diffusion.

However, we need to use the whole distributionn(r) in the
calculation of the steady-state rate constant (eq 4.3). Near the
kinetic limit, n(r) can be readily obtained from eq 4.13. For
fast diffusion, both corrections to 1 (the first term) in eq 4.13
are small and can be estimated by iteration. The first one gives
us the following:

x ) r/σ andWI(x) ) WI(r)σ3. Substituting this approximate result
into the general definition of the rate constant, eq 4.3, we obtain

This is, in fact, the CK eq 3.3 expanded in terms ofk0/4πRD
, 1, whereR ) σ/µ according to the definition in eq 3.5.
However,µ is no longer a phenomenological parameter. Rather,
it acquires the proper definition in terms of the arbitrary transfer
rate:

After substitutingWI(x) )
k0

4π
δ(x - 1) into this equation, we

obtainµ ) 1, which reduces eq 4.15 to the original Collins-
Kimball expression for the contact reaction. However, for the
exponential rate (eq 1.5), which accounts for the finite size of
the reaction zonel, it follows that after integration (4.16)

ki ) ∫WI(r)ns(r) d3r ) 4πRQD (4.3)

ns(r) ) lim
tf∞

n(r, t) ) lim
sf0

sñ(r, s) (4.4)

n̆ ) -WI(r)n + L̂n
∂n
∂r |r)σ

) 0 n(r, 0) ) g(r) (4.5)

n(r, t) ) ∫G(r, r0, t) g(r0) d3r0 (4.6)

G̃(r, r0, s) ) G̃0(r, r0, s) -

∫G̃0(r, r′ s) WI(r′) G̃(r′, r0, s) d3r′ (4.7)

Ġ0 ) L̂G0

∂G0

∂r |
r)σ

) 0 G0(r, 0) )
δ(r - r0)

4πr2
(4.8)

∫G̃0(r, r0, s) g(r0) d3r0 )
g(r)

s
(4.9)

ñ(r, s) )
g(r)

s
- ∫G̃0(r, r′, s) WI(r′) ñ(r′, s) d3r′ (4.10)

ns(r) ) g(r) - ∫WI(r′) G̃0(r, r′, 0) ns(r′) d3r′ (4.11)

G̃0(r, r′, 0) ) {exp(rc/r)[1 - exp(-rc/r′)]
4πrcD

at r < r′

exp(rc/r) - 1

4πrcD
at r > r′

(4.12)

ns(r) ) 1 - 1
rD∫σ

r
WI(r0) ns(r0) r0

2 dr0 -

1
D ∫r

∞
WI(r0) ns(r0) r0 dr0 (4.13)

ns(r) ) {1 -
ki

4πDr
) 1 -

RQ

r
at r f ∞

1 - R/D at r ) σ

ns(x) ) 1 - 1
σD[1x∫1

x
WI(y) y2 dy + ∫x

∞
WI(y) y dy]
for k0 , 4πσD (4.14)

ki ) k0[1 -
k0

4πσD
µ(F)] (4.15)

µ )
∫1

∞WI(x)

x
d3x∫1

x
WI(y) d3y + ∫1

∞
WI(x) d3x∫x

∞WI(y)

y
d3y

(∫1

∞
WI(x) d3x)2

(4.16)
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This expression is identical to one that can be obtained from
eq 54 of ref 21. That work used a different method (EDA),
which implies the complete solution of the kinetic equation for
electron transfer. In contrast, our general result, eq 4.16, does
not depend on reactant dynamics and is applicable to an arbitrary
WI(r). In particular, we will use it below to findµ(F) for a
Marcus rateWI(r), eq 2.5.

As seen from Figure 3, the difference between the dashed
line representing the CK result and the solid curve that is
considered to be exact is rather small within the available range
of viscosity variation. However, the difference increases at
higher viscosity, indicating that the electron transfer when
diffusion is slow is neither contact (R ) σ) nor quasi-contact
(R ≈ σ) as in the Collins-Kimball approximation.

To illustrate the nature of this approximation, let us insert eq
4.11 into the definition (eq 4.3) and use only the zero iteration
under the integral (ns ) 1). The result can be presented as

where

By substituting thiskD for 4πRD in a more general Collins-
Kimball expression (eq 3.3), one obtains the result derived with
a “closure approximation”36 that is given in ref 37. Evidently,
µ ) 4πσD/kD, which is obtained from eq 4.19, accounts for the
difference between remote and contact transfer.

The slope of the CK line obtained using the exponential
transfer rate is given by the factorµ from eq 4.17, which
decreases withF ) l/σ as shown in Figure 5. But the same
parameter can be calculated numerically from eq 4.16 for the
Marcus-type rate as well. From the numerical calculations, we
found how the correspondingµ depends onF ) L/σ, that is, on
the true tunnelling parameterL. By comparing these curves in
Figure 5, we see thatL is larger thanl if µ is the same for both
curves. In particular, the exponent withl ) 0.85 Å is equivalent
in the CK approximation to the Marcus rate withL ) 1.65 Å.
The latter value is very close to theL value found in ref 17.
There,â ) 2/L ) 1 Å-1 was obtained from fitting the DET
theory with the Marcus rate to the experimental kinetic curves
reflecting the fluorescence quenching by electron transfer. The
small difference between the value obtained here and that
reported previously17 may be attributable to the fact that we
included neither the solvent radial distribution functiong(r) nor
the distance dependence of the diffusion constantD(r).

V. High-Viscosity Asymptote of the Quenching Radius

The analysis of the dependence of the rate constant on
diffusion, which is shown in the curves in Figure 3, was proven
to be very useful. A similar analysis of the quenching radii
variation with the diffusion constant, which is displayed in
Figure 6, is even more instructive. The curve that represents
the transition from kinetic to diffusion control in the simplest
contact approximation levels off at the value of the true contact
radiusσ, whereas the generalized Collins-Kimball approxima-
tion, which includes the reaction layer in the reaction sphere,

magnifies this value to the size ofR. However, the effective
quenching radiiRQ in more viscous solvents exceed even this
value and tend to increase asRs(D) does with further increases
of the viscosity.

The model dependencies of the radii on diffusion can be seen
better in Figure 7, where they are represented over a much larger
range of viscosity variation than the range that was available
experimentally. In the region of deep diffusion control of
electron transfer, both the contact and the generalized Collins-

µ(F) ) 1 + 5F/4 + 5F2/8 + 5F3/32

1 + 2F + 2F2 + F3 + F4/4
e 1 (4.17)

ki ) k0 -
k0

2

kD
(4.18)

1/kD )
∫∫WI(r) G̃0(r, r′, 0) WI(r′) d3r d3r′

[∫WI(r) d3r]2
(4.19)

Figure 5. Slope parameterµ of the Collins-Kimball relationship for
the Marcus transfer rate in the normal region (thick line) and for its
exponential transfer rate equivalent (thin line). The difference between
L and l related to the sameµ is indicated by the vertical dashed lines.

Figure 6. Dependence of the effective electron-transfer radiusRQ on
diffusion. Experimental data, indicated by circles, are approximated
by thin and dashed lines representing the contact and the Collins-
Kimball relationships, respectively. The thick line depicts the same
dependence, but for the exponential transfer rate withl ) 0.85 Å and
Wc ) 180 ns-1 that is depicted by a dotted line in Figure 4.

Figure 7. Same data as in Figure 6, but for a much larger range of
viscosity variation. The dashed-dotted line represents the linear
asymptote for the true Marcus rate, which is steeper than the asymptote
for the exponential approximation of the transfer rate (the end of the
thick line).
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Kimball approximations are represented by horizontal lines. The
heights of these plateaus indicate the sizes of the external radii
of the reaction spheres. In contrast, the radius for remote
quenching with the exponential transfer rate lies far above the
plateaus and increases as the logarithm of inverse viscosity
following eq 1.6. In fact, this relationship forRs(D) is the straight
line with slope l/2 in the coordinates of Figure 7. This linear
asymptote is common for reflecting7 and absorbing9,10boundary
conditions because under diffusional control it does not matter
whether there is quenching at contact. The excitations never
reach contact because, for slow diffusion, they are quenched
by electron transfer farther apart, atRs . σ.

However, it is important to remember that the largestRQ

results from the most remote electron transfer represented by
the larger exponent of the Marcus transfer rate (eq 4.2) (see
Figure 4). There, the asymptotic equation (eq 1.6) gives way to
a similar equation but one with the true tunnelling lengthL:

Because in our caseL is almost twice as large asl, the dashed-
dotted line representing the final asymptotic behavior ofRQ(ln
D) in Figure 7 is twice as steep as the heavy line calculated
with the pure exponential rate. However, experiments at such a
high viscosity seem unattainable. Even the initial change in the
slope of the data is not definitive, which means that not only
the kinetic but also the diffusional electron transfer remains near-
contact in the available range of viscosities.

The opposite situation was expected in early work.13 Owing
to a strong overestimation of the effective radii, which were
incorrectly extracted from the nonstationary quenching, the
maximal values (about 15 Å) exceeded the contact radius (4
Å) by a factor of almost 4. The transfer reaction at such a large
distance was attributed to diffusion control whereRQ(D) has to
obey the asymptotic relationship (eq 1.6), which is represented
by the linear increase ofRQ(ln D) in Figure 8. Because the slope
of this line can be greatly overestimated by the incorrect
extraction ofRQ from the kinetic data, there is nothing surprising
about the fact that the value ofl found in ref 13 is also too
large: l ) 5.4 Å. WhenRQ was found in the same way from
the present data and was fit by the same linear asymptotic
relation (eq 1.6), the result obtained was also incorrect:l ≈ 4

Å. The real values ofRQ that we have obtained from the proper
analysis of the same data are much smaller then their rough
estimates that ignore nonstationary quenching. Therefore, fitting
the data with the remote quenching equation (eq 1.6) is
inappropriate, whereas the Collins-Kimball approximation of
quasi-contact quenching holds in almost all situations.

VI. Conclusions

By fitting the differential encounter theory to the most
accurate experimental data on electron-transfer kinetics observed
by fluorescence quenching, we obtained excellent agreement
between data and theory over the entire viscosity range used in
the seven experimental systems. Reasonable values of the
important parameters of electron transfer were obtained from
the best fit of the predicted diffusion dependence of the transfer
rate constant to the experimental value. A few important
conclusions can be deduced from this work:

(1) The effective quenching radii should be extracted from
the real quenching kinetics, taking into account its nonstationary
nature.

(2) The linear relationship between the inverse rate constant
and the inverse diffusion constant should be used to specify
the kinetic rate constant,k0, and the effective Collins-Kimball
radius of the quenching sphere,R.

(3) For electron transfer in the Marcus normal region, the
exponential approximation of the Marcus model is reasonable.
Allowing an analytical solution of the problem, the exponential
approximation gives a better fit to the experimental data than
do contact or generalized Collins-Kimball models. The effec-
tive tunnelling lengthl is obtained from the appropriate fitting
procedure.

(4) This length can be related to an actual length by equalizing
the slopes of the Collins-Kimball lines corresponding to the
Marcus transfer rate and its exponential approximation. The data
can also be fit using the Marcus transfer rate with numerical
methods.

The work presented here solves an important, long-standing
problemsthe overestimation of the tunnelling lengthL in liquid
solutions.13 Now it is clear that proper analysis will yield values
similar to those obtained here, such asL ) 1.65 Å, which
corresponds to the Marcus value ofâ ) 2/L ) 1.2 Å-1 and
does not exceed earlier reports.3 In rigid structures, tunnelling
over long distances was sometimes attributed to the super
exchange through molecular intermediates (as occurs in mo-
lecular wires).4 However, in liquid solutions, intermolecular
electron transfer is expected to be shorter than intramolecular
electron transfer. When the intermediates are mobile solvent
molecules, the coherence of transfer is broken, and super
exchange becomes ineffective.38
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Photoionization affected by chemical anisotropy
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The kinetic constants of rhodamine 3B quenching by N ,N-dimethyl aniline were extracted from the
very beginning of the quenching kinetics, recently studied in a few solvents of different viscosities.
They were well fitted with the conventional kinetic constant definition, provided the radial
distribution function of simple liquids was ascribed to the reactant pair distribution and the contact
electron transfer rate was different in all the cases. This difference was attributed to the chemical
anisotropy averaging by the rotation of reactants, which is the faster in solvents of lower viscosity.
With the proper choice of a space dependent encounter diffusion, the whole quenching kinetics was
well fitted with an encounter theory, using the Marcus �J. Chem. Phys. 24, 966 �1956�; 43, 679
�1965�� transfer rate instead of the contact Collins-Kimball �J. Colloid. Sci. 4, 425 �1949��
approximation. Not only the beginning and middle part of the quenching were equally well fitted,
but the long time �Markovian� rate constant was also found to be the same as previously obtained.
Moreover, the concentration dependencies of the fluorescence quantum yield and the Stern-Volmer
constant were specified and await their experimental verification. © 2007 American Institute of
Physics. �DOI: 10.1063/1.2423027�

I. INTRODUCTION

Energy quenching of A* �excited rhodamine 3B� by elec-
tron transfer from donor D �N ,N-dimethylaniline� obeys the
typical reaction scheme

A*

↓�A

+ D ——→
WI

�D+
¯ A−�
⇓

——→
�̄

D+ + A−. �1.1�

Here we are interested only in the first stage of this reaction
which is the irreversible bimolecular ionization with space
dependent rate WI�r�. In differential encounter theory �DET�
the survival probability of excitation N�t� is given by the
expression:1,2

N = exp�−
t

�A
− c�

0

t

kI�t��dt�� = e−t/�AP�t� , �1.2�

where the first exponent is the natural decay with the lifetime
of the luminophore, �A, while P�t� represents the kinetics of
quenching by impurities whose concentration c= �D�. The
time dependent ionization rate “constant” kI�t� is actually a
convolution of WI�r� and the pair distribution of reacting
particles, n�r , t�, but the particular expressions for the short-
est and longest time limits are very special,

kI�t� =� WI�r�n�r,t�d3r

= �� WI�r�g�r�d3r = kc at t → 0

4�RQD�1 +	 RQ
2

�Dt
� at t → � .
 �1.3�

The equilibrium radial distribution function g�r�, together
with WI�r�, specifies the initial rate constant kc=kI�0�, while
the encounter diffusion coefficient D and the effective reac-

tion radius RQ�D� determine the final �Markovian� quenching
rate ki=kI���=4�RQD.

In a very popular exponential model of tunneling the
ionization rate exponentially decreases with separation of re-
actants,

WI = Wce
−2�r−��/l, �1.4�

where l is an effective length of electron tunneling near the
closest approach distance �. For this model the quenching
reaction radius was calculated exactly with DET long ago,3

assuming that g�r�=1. Though very complex, this expression
takes the especially simple form under diffusional control,

RQ = � + l
2 �ln�Wcl

2/4D� + 2C� , �1.5�

where C is the Euler constant. Since the long time quenching
is always under diffusional control, the last formula is all one
needs to study the longest time kinetics. This is what was
done at the very first attempt to apply DET to a real experi-
ment �quenching of pheophytin a by toluquinone�.4 Assum-
ing that at the times studied the quenching is already station-
ary, the experimentally found diffusional dependence of its
rate constant ki�D� was well fitted with the theoretically ex-
pected one �Eq. �1.5��. Surprisingly, the value of l obtained
from the best fit appeared to be too large �more than 5 Å�.
This confusion showed that the stationary quenching had not
been reached in the restricted range of times studied. Unfor-
tunately, the shorter times were not available for experimen-
tal study in the Ukraine of the late 1980s.4

The nonstationary diffusional quenching P�t� was stud-
ied only recently: at moderate times and for a few different
concentrations.5 All of them gave the same result for a
quantity
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− ln P�t�/c = 4�RQDt + 8RQ
2 	�Dt , �1.6�

which is actually �0
t kI�t��dt� under diffusional control. This

relationship allowed us to find RQ, by fitting the nonstation-
ary experimental data, and make sure that the extracted tun-
neling length l=0.85 Å had quite a reliable value.

However, the system thoroughly studied in Ref. 5 was
recently subjected to a new investigation by the same experi-
mental group but with another technique and a few new
solvents.6 The main difference is that instead of a single-
photon counting used earlier, now the fluorescence upconver-
sion was employed, allowing more accurate study of the first
450 ps of the quenching kinetics. Contrary to the previous
investigation which was based on the long time asymptotic
behavior �up to 4 ns�, now only the short time initial quench-
ing is available for study but with a much better accuracy
and shorter excitation pulse, f�t�. In fact what is measured is

�
0

t

f�t�N�t − t��dt� � e−ckct at kc � ki � 1/�A. �1.7�

First of all it makes absolutely inapplicable the previ-
ously used methodology. The strategy should be completely
changed: instead of the long time asymptotic behavior we
have to turn our attention to the alternative, short time
quenching, equally well defined in Eq. �1.3�. From the initial
quenching rate we extract the kinetic constant which is a
convolution of the Marcus electron transfer rate and the equi-
librium pair distribution of reactants. From the best fit of the
experimental data, the absolute value of the space dependent
Marcus rate can be specified, as well as its contact value in
solvents of different viscosities. The dispersion of these val-
ues is related to the chemical anisotropy of the reaction, av-
eraged by rotational diffusion. The latter accelerates the con-
tact reactivity, making the kinetic constant viscosity
dependent, as was predicted long ago.7

With the well defined Marcus rate, the whole kinetics of
energy quenching by electron transfer is fitted here, varying
only the diffusion coefficient and tunneling length. Compar-
ing the results with the popular contact approximation,8 we
found it inapplicable to the system under consideration. On

the contrary, the encounter theory of remote electron transfer
allows us not only to reproduce all the experimental findings
but also to predict the fluorescence yield concentration de-
pendence, as well as that of the Stern-Volmer constant.

II. INITIAL RATES

The typical experimental equivalent of the quantity �Eq.
�1.7�� is shown in Fig. 1. Ignoring the excitation accumula-
tion, during the short light pulse represented by the ascend-
ing branch, one can find the rate of the initial quenching as a
slope of the linear descending branch equal to ckc. Doing the
same for other concentrations, we confirm the linear concen-
tration dependence of this rate for any of the solvents studied
in Ref. 6 �Fig. 2�. As a result, we have three kc values, for
acetonitrile �Ac�, butyronitrile �Bu�, and benzonitrile �Be�
listed in Table I.

The initial kinetic rate constants found experimentally
have to be compared with the theoretical ones. These con-
stants should be calculated, not with a model but with the
Marcus electron transfer rate obtained in the lowest order
perturbation theory �regarding the coupling V0 between the
donor and acceptor states�,1,9

WM�r� =
V0

2

�
	 �

	T
exp−

2�r − ��
L

�exp−
�
GI + 	�2

4	T
�

= U�r�e−�
GI + 	�2/4	T. �2.1�

Here the Boltzmann constant kB=1, while the free and reor-
ganization energies are

FIG. 1. The kinetics of energy accumulation and initial quenching �normal-
ized to the maximum�. Data for 0.27M solution of rhodamine 3B in aceto-
nitrile borrowed from Ref. 6.

FIG. 2. The linear concentration dependence of the initial quenching rate in
three different solvents: acetonitrile ���, butyronitrile ���, and benzonitrile
���.

TABLE I. Kinetic constants at different viscosities.

SOLVENTS Ac Bu Be

kc �Å3/ps� 289 161 80
� �cP� 0.34 0.62 1.27
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GI = 
Gi + T rc

�
−

rc

r
� and 	�r� = 	i + 	0�r� , �2.2�

where 
Gi=
GI��� and 	c=	��� are the contact values of
the free and reorganization energies, rc=e2 /T� is the Onsager
radius of the Coulomb attraction, and �=rd+ra is the sum of
the donor and acceptor radii. At a large static dielectric con-
stant �→�, one can take rc=0 and 
GI�
Gi, as we did
earlier.5 The reorganization energy is composed of the space
independent internal part, 	i, and the external one, 	0�r�,
accounting for the polar solvent reorganization. The latter is
given by the well known formula

	0 =
e2

8��0
 1

�op
−

1

�
� 1

rd
+

1

ra
−

2

r
� , �2.3�

where �op=1/n2 is the optical dielectric constant.
Calculating the true ionization rate one has to account

not only for the electron tunneling but also for the dynamical
solvent effect �DSE� that can control the transfer at the short-
est distances.11 Doing it as in Ref. 12, we have

WI�r� =
U�r�

1 + U�r��
e−�
GI + 	�2/4	T and

1

�
=

1

4�L

	 	

�T
,

�2.4�

where �L is the longitudinal relaxation time of the solvent
polarization which assists the electron transfer.

Knowing kc, 
GI, 	, �L, and the true tunneling length L,
it is easy to find

kc =� U�r�g�r�
1 + U�r��

exp−
�
GI + 	�2

4	T
�d3r , �2.5�

provided g�r� is also known. The preceding analysis of the
long time kinetics in the same system was made, assuming
g�r�=1.5 The last assumption is reasonable for the diffu-
sional quenching which occurs mainly at r�RQ�� where
g�r� really tends to 1 �Fig. 3�.

On the contrary, looking for the initial rate constant kc,
defined in Eq. �2.5�, we cannot ignore the space modulation
of g�r� because the reaction proceeds everywhere. It is espe-
cially fast near the contact where maximal g�4 �Fig. 3�, but

using the hard sphere model g�r� in Eq. �2.5� the result after
integration appears to be only twice as much as obtained
with g=1. As a matter of fact the g factor was accounted for
only in the works of Tavernier et al. using the hard sphere
model for g�r�. All the necessary information can be ob-
tained from Ref. 10 and other works cited herein. Of course,
the hard sphere model usually applied to the quasisimple
liquids is the simpler but not the best choice. However, kc

resulting from the integration over r in Eq. �2.5� is expected
to be weakly affected by substituting the real g�r� for the
model one. Anyhow, revising here the Fayer work we have to
take g�r� exactly like it is there, neither worse nor better.

The main fitting parameter of the transfer rate �Eq. �2.1��
is actually the electron coupling, V0. Unfortunately, it cannot
be uniquely determined from a single constant kc that was
determined here and listed in Table I. The complex expres-
sion obtained for it in Eq. �2.5� depends not only on V0, but
also on some other fitting parameters: �L and L. To specify
them we have to fit the quenching kinetics at longer times
which are affected by translational diffusion that can be ei-
ther measured or extracted from the known viscosity �. This
will be done in the next section to get the entire reliable
information about the real transfer rate WI�r� and its contact
value,

Wc =
Uc

1 + Uc�
e−�
Gi + 	c�2/4	cT, �2.6�

where Uc=V0
2 /�	� /	cT.

III. DIFFUSIONAL ACCELERATION OF QUENCHING

To specify the nonexponential quenching kinetics suc-
ceeding the initial exponential decay, the general time depen-
dent rate constant �Eq. �1.3�� should be calculated with n�r , t�
obtained from the solution of the equation,

ṅ = − WIn + L̂n , �3.1�

where

L̂n =
1

r2

�

�r
D�r�r2 �n

�r
+

�u�r�
�r

n� .

L̂ is the operator of encounter diffusion with space dependent
coefficient D�r� in the pseudopotential

u�r� = − T ln g�r� ,

furnishing the equilibrium distribution of reactants before ex-

citation: �L̂n�t0= L̂g�r�=0. The initial and reflecting bound-
ary conditions to Eq. �3.1� are

n�r,0� = g�r�, � �n

�r
+

�u�r�
�r

n��
�

= 0.

They differ from those previously used in encounter theory,
assuming g�r�=1 and u�r�=0. This simplification ignores the

liquid structure turning L̂ into a conventional diffusional op-

erator for neutral particles, L̂=D�r�
. Courtesy of Fayer, the
original experimental data published in Ref. 6 was given to
us by the authors for independent fitting. Unlike them, we
took for all the systems L=1.65 Å instead of L=2 Å chosen

FIG. 3. The equilibrium radial distribution function kindly placed at our
disposal by the authors of Ref. 6.
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in their work. The main reason is that the smaller value is
more reliable, and this particular one was firmly established
earlier in our joint article with Gladkikh et al.5 Here we
repeat the long time analysis once again using the new data
and new solvents studied in their last work6 and keeping the
same 	�r� calculated there with the intramolecular 	i

=0.053 and the data: rd=4.12 Å and ra=2.75 Å �Table II�.
The bulk diffusion coefficient D was obtained from � by

the Stokes-Einstein relationship, while the space dependence
of D�r� was defined as recommended by Deutsch and
Felderhof,14

D�r� = D�1 −
3rdra

r�rd + ra�� .

This dependence was considered also in Ref. 15 but the pref-
erence there, as well as in subsequent works, was given for
an alternative formula for D�r� developed by Northrup and
Hynes.16 However, the latter involves an additional param-
eter, and we found it empirically to be less flexible and rather
ineffective in fitting the quenching kinetics.

Using 
Gi=−582 meV, calculated from Eq. �10� of Ref.
10, we just had to fit the kinetic curves for both moderate and
long times, operating with only two variable parameters, V0

and �L, and keeping kc=const. This work was done for all
concentrations of the three solvents available, and the ex-
ample of the best fit is given in Fig. 4. The electron couplings
V0 obtained from such fitting for all the solvents are listed in
Table III together with �L values which establish the upper
limits for the contact reaction rates, Wc, caused by DSE. The
literature values for �L presented in Ref. 6 are the longest
ones if the longitudinal relaxation proceeds a few different
times. As was pointed out in such a case, only the shortest
time contributes strongly to the DSE.18–20 Therefore, we
were free to choose �L from the best fit, whatever it is.

As a matter of fact, the time dependent rate constant kI�t�
reducing with time from kc=kI�0� to ki=kI��� is the main
result of our fitting, allowing us to reproduce the quenching
kinetics at any desirable concentration. To compare the dif-
ferent solvents it is enough to relate them to the correspond-
ing kI�t�. This is done in Fig. 5 which indicates the diffu-
sional acceleration of quenching in the solvents of lower
viscosity.

This is natural for the final �stationary� constant which is
known to increase with D. For instance, in the contact ap-
proximation

ki =
k0kD

k0 + kD
, �3.2�

where kD=4��D is the diffusional rate constant, while k0 is
the diffusion independent kinetic rate constant which is eas-
ily calculated from the obtained ki and kD. In the contact

theory kI�0��k0 for any diffusion �viscosity�.
However, our quenching is not contact and its rate con-

stant is initially much larger k0. Moreover, unlike k0 the ini-
tial rate constant kc is not a constant at all but increases with
D being inverse proportional to viscosity �Table I�. This is a
surprise. According to Table III not only kc and Wc, but also
V0, depend on the solvent viscosity although the latter con-
trols only the reactant mobility. The electron coupling V0 is
just the static property of the contacting reactants that should
not be affected by their motion.

This is the paradox resulting from the spherically isotro-
pic model of reactants whose reactivity is implied to be in-
dependent of the mutual orientation. Such a paradox can be
qualitatively resolved only by taking into account the chemi-
cal anisotropy of the reaction. Until now this factor was ig-
nored in the unified theory �UT� and integral encounter
theory �IET� of electron transfer1,2 but was exhaustively
studied earlier by means of DET though in contact

TABLE II. Static and optical dielectric constants.

SOLVENTS � �op

Acetonitrile 36.6 1.8
Butyronitrile 20.9 1.9
Benzonitrile 25.9 2.3

FIG. 4. The survival probability of excitation �in arbitrary units� at moderate
�a� and long times �b�. For c=0.17M, 0.27M, and 0.48M �from top to
bottom� in acetonitrile.

TABLE III. Fitting parameters.

SOLVENTS Ac Bu Be

V0 �meV� 44.32 18.32 27.72
�L �ps� 0.05 0.1 4

Wc �1/ns� 340 201 51.1

D �Å2/ns� 440 240 120

ki �Å3/ps� 22.84 12.27 7.85
kD �Å3/ps� 37.99 20.72 10.36
k0 �Å3/ps� 57.26 30.12 12.63
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approximation.4 The averaging of the spherical anisotropy of
the reaction by rotational diffusion can explain the increasing
of Wc in less viscous solvents where rotation is faster. The
same is true for the corresponding effective value of V0, if
the relationship �2.6� between Wc and V0 remains unchanged.

IV. SPHERICAL ANISOTROPY OF ELECTRON
TRANSFER

The contact reaction is chemically anisotropic if the
sphere of the contact radius � is not equally active anywhere
but only within the small spot on it of the area �1. Then
the cage reaction is facilitated by rotation which averages the
spherical anisotropy.

Such a reaction studied in Ref. 7 is sensitive to the ki-
nematics of reorientation, modulating the reactivity of a pair.
The survival probability of the reactants in a cage, n̄�t�,
decays nonexponentially with time, so that the effective re-
action is actually the inverse lifetime of the reacting pair
�Sec. V in Ref. 7�:

W0 = ��
0

�

n̄�t�dt�−1

. �4.1�

The orientationally averaged n̄�t� depends on the rate of ro-
tation and its mechanism, not mentioning the particular an-
isotropy peculiar to a given reactant pair. Since nothing
about this is known perfectly we will be concerned only with
the simplest rotational model illustrating a main feature of
the phenomenon: the acceleration of the reactivity by the
jumpwise reorientation with frequency 1/�0��.7 In the re-
active spot model the rate of the reaction is wc only within
the spot and zero outside it. The reaction kinetics studied in
Ref. 7 and used for calculating its hopping rate �Eq. �4.1��
furnishes the desired result,

W0 =
wc�

1 + wc�1 − ���0�
�

1 − �

1

�0
=

const

�
rotational control

wc� kinetic limit.



�4.2�

As seen in Fig. 6, the effective contact rate Wc, which is the
closest analog of W0, quasilinearly depends on inverse vis-

cosity, indicating that contact transfer is under rotational
control. If ��0.2 the latter is approximately the same as Wc

in Table III, W0=0.25/�0=250 ns−1 provided �0�1 ps and
wc�1013 which is necessary to maintain the true rotational
control �wc�0�1�. Under such conditions the spherical an-
isotropy of the reaction can be really averaged by reactant
rotation. If the latter proceeds as a sequence of sudden turns,
the reaction mechanism is hopping �jumping� provided the
jump size � is larger than the reaction spot and the hopping is
faster than the orientational relaxation: 1 /����2 /�0. More-
over, if the jumps are even smaller than the reactive spot then
the system penetrates into it by rotational diffusion. The dif-
fusional reaction in a cage which is an alternative to the
hopping one was also studied in Ref. 7 and was used to
describe the chemically anisotropic radical reactions consid-
ered as “pseudodiffusional.”13

The continual diffusion in the angle space can also be
originated not from sudden jumps but from the free inertial
passes of finite length,17 and the chemical activity is not
necessary localized in the spot but can be distributed over the
whole sphere.7 The true mechanism of the anisotropic reac-
tion is worthy of special consideration accounting for the real
geometry of the reactants and the true mechanism of their
rotation, available for independent �spectroscopical�
investigation.17 Unfortunately, all the theories of chemical
anisotropy7,13,21,22 addressed only the contact reactions. Nei-
ther of them spreads out to the remote electron transfer con-
sidered here. As long as such a transfer is spherically isotro-
pic we can do no more than to recognize why its effective
coupling is viscosity dependent.

V. FLUORESCENCE QUANTUM YIELD

With this effective coupling and other parameters ob-
tained from the best fit, we got the reliable time dependence
of kI�t� which monotonously reduces with time, approaching
the final �stationary� rate constant ki=kI���. Being equalized
to the well known expression �3.2� of the contact theory, it
allows one to get two major parameters of the latter: k0 and
kD. Using them in the famous Collins and Kimball formula,8

FIG. 5. The time dependent rate constants of quenching in acetonitrile �a�,
butyronitrile �b�, and benzonitrile �c�. FIG. 6. The contact transfer rate ��� compared with the cage rate of the

stereo-anisotropic reaction, accelerated by jumplike reorientations �solid
line�.
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kI�t� = ki1 +
k0

kD
ex erfc 	x� , �5.1�

where x= �1+k0 /kD�2Dt /�2, we can restore the whole time
dependent constant kI�t� of contact theory. In Fig. 7 we com-
pared it with that found here for the remote transfer. Being
almost the same at rather long times, they are quite different
at the very beginning. The contact theory underestimates the
initial quenching since k0�kc. This defect is also seen in the
kinetics of quenching which is very different in the contact
and remote models of electron transfer. The remote energy
quenching proceeds much faster than the contact one, espe-
cially at the beginning �Fig. 8�.

As a result, the luminescence quantum yield appears to
be quite different in these two cases. According to its general
definition

� = �
0

�

N�t�dt/�A =
1

1 + c��A
, �5.2�

where � is the constant of the Stern-Volmer law which is
usually expected to be linear in coordinates 1 /� vs c. Con-

trary to this expectation, the substitution into Eq. �5.2� of the
general expression �1.2�, with all parameters already known,
leads to the nonlinear dependence of 1 /� on c �Fig. 9�. In
other words the Stern-Volmer constant � in Eq. �5.2� is con-
centration dependent. Only at the lowest quencher concen-
trations,

� � �
0

�

e−t/�A�1 − c�
0

t

kI�t��dt�� dt

�A
= 1 − c�0�A,

where the original Stern-Volmer constant

�0 = �
0

�

e−t/�A��
0

t

�I�t��dt�� dt

�A
�5.3�

is really concentration independent. For our system it ap-
pears to be a bit different in different solvents, as shown in
Table IV.

However, the true constant from Eq. �5.2� increases at
higher concentrations. This dependence, ��c�, presented in
Fig. 10 for all three solvents studied, can be subjected to a
special experimental inspection for checking the self-
consistency of the present theory and its validity limits.

VI. CONCLUSIONS

Although the most successful, this is not the first attempt
to fit the different experimental data obtained for one and the
same system in acetonitrile. Since all the data are compat-
ible, one has to expect that the principal parameters of the
transfer rate WI�r� obtained from the best fit in the present
work must be comparable with those found earlier, from the
fitting made in 2006 �Ref. 6� and 2002 �Ref. 5�. The main
ones listed in Table V indicate that there is nevertheless the
wide scatter of the published results. There are reasonable
explanations for such a discrepancy.

TABLE IV. Original Stern-Volmer constant.

SOLVENTS Ac Bu Be

�0 �Å3/ps� 27.8 16.7 12.0

FIG. 7. The time dependent rate constant in acetonitrile, calculated by the
encounter theory of remote electron transfer �a� and in the contact approxi-
mation of Collins and Kimball �b�, provided the stationary rate constants
ki=kI��� are the same. The dotted line represents the Markovian description
of quenching: ki=const at any time.

FIG. 8. The long time and short time �in the inset� decays of excitation in
acetonitrile at quencher concentration c=0.27M. The dashed lines are ob-
tained in contact approximation.

FIG. 9. The nonlinear Stern-Volmer law for the luminescence quantum yield
in acetonitrile ���, butyronitrile ���, and benzonitrile ���.
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Making our first attempt in 2002 to fit the theory to the
available experimental data, we had at our disposal only the
long time kinetics of quenching and did not take into account
the liquid structure represented by g�r�. It is not surprising
that extrapolating too far to initial times and assuming g�r�
=1 at any r, we underestimated the initial rate constant
which appeared to be much closer to k0=57.26 from Table
III than to the actual kc=289.5.

In 2006, the authors of Ref. 6 using the data for moder-
ate times and accounting for a true g�r� arrived at kc which is
almost twice as large as before but still much smaller than
the actual one obtained from the initial quenching in the
present work. However, taking ad hoc too large a L=2 Å
they enhanced the quenching rate everywhere and had to
reduce Wc, pushing down V0 to keep kc unchanged. In the
present work we returned back to the earlier specified
smaller L=1.65 Å and included g�r� into consideration. Both
these factors significantly enhance the initial quenching
constant kc which we bring into one-to-one correspondence
with the value first obtained here from the original experi-
mental data.

The Wc and V0 values obtained here seem the most reli-
able. They are based on the analysis of both the initial and
moderate quenching kinetics and account for the actual liq-
uid structure and DSE. However, the spherically isotropic
model of tunneling ignores the real chemical anisotropy of
transfer. Therefore, we relate to these data as to the effective

parameters of the model which perfectly well describes the
whole quenching kinetics, allowing us to predict the fluores-
cence quantum yield and the concentration dependence of
the Stern-Volmer constant. Moreover, the estimate of the
most important tunneling parameters is rather reliable and
does not depend too much on the choice of model. They are
found in the admissible interval of possible values,

20 meV  V0  45 meV, 1.5 Å � L � 2 Å.

Most problems do not require better accuracy.
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The fluorescence dynamics of perylene in the presence of tetracyanoethylene in acetonitrile was studied
experimentally and theoretically, taking into consideration that the quenching is carried out by remote electron
transfer in the Marcus inverted region. The initial stage was understood as a convolution of the pumping
pulse with the system response accounting for the fastest (kinetic) electron transfer accompanied by vibrational
relaxation. The subsequent development of the process was analyzed with differential encounter theory using
different models of transfer rates distinguished by their mean square values. The single channel transfer having
a bell-shaped rate with a maximum shifted far from the contact produces the ground state ion pair. It was
recognized as inappropriate for fitting the quenching kinetics at moderate and long times equally well. A
good fit was reached when an additional near contact quenching is switched on, to account for the parallel
electron transfer to the electronically excited state of the same pair. The concentration dependence of the
fluorescence quantum yield is well fitted using the same rates of distant transfer as for quenching kinetics
while the contact approximation applied to the same data was shown to be inadequate.

I. Introduction

Fluorescence quenching in solutions is often considered
within the classical theory of Smoluchowski1 and Collins &
Kimball,2 assuming that the reaction is carried out at the closest
approach distance between excited energy donor D* and
acceptor A. This popular contact model applied to numerous
systems3 is reasonable for proton transfer4 but bad for the long-
range energy transfer governed by multipole interactions.5-7 The
electron transfer is intermediate between these two extremes.
If the reaction occurs in the normal Marcus region, it can be
considered as contact at fast diffusion, but at slow diffusion
the effective quenching radius significantly exceeds the contact
distance.3,8,9In the inverted region, the electron transfer is remote
at any diffusion because the maximum of the Marcus rate is
shifted out of contact.3,10,11 In general, the ionization carried
out by the position dependent rateWI(r) is represented by the
following reaction scheme:8

The remote transfer in liquids assisted by the encounter diffusion
of partners is well described by the differential encounter theory
(DET)12-17 recently reviewed in ref 3. However, for a long time
the attempts to describe the reaction kinetics with either contact
theory or DET were either unsuccessful or led to the nonphysical
values of the electron-transfer parameters.

For instance, Fleming et al. studied the diffusion-influenced
quenching reaction between rhodamine B and ferrocyanide and
came to the conclusion that the Collins and Kimball contact

model cannot consistently explain both the rapid initial decay
(upconversion data) and the slower decay investigated with time-
correlated single photon counting.18 The fitting parameters of
the model which are good for short times are poor for long-
time decay and vice versa. This deficiency is inherent in the
contact approximation which completely ignores the static
quenching, preceding the diffusional one. Finally, it was widely
recognized that “as long as we adopt realistic values of diffusion
coefficients, the experimentally obtained decay curves...cannot
be satisfactorily reproduced by the Collins and Kimball model,
whatever values of the parameters are assumed”.19

Calculations of this sort were also done with the rectangu-
lar20,24and exponential21-23 models of the electron-transfer rate
WI(r). In the normal Marcus region, the rectangular model with
varying parameters is a bit better than the contact one, as well
as the exponential model,

which is the rough simplification of the single channel Marcus
rate:

HereV0 andL are the contact matrix element and the length of
the electron tunneling, whileλ(r) and∆GI(r) are the reorganiza-

D*
VτD

+ A 98
WI

D+ + A- (1.1)
WI(r) ) Wc exp(-

2(r - σ)
l ) (1.2)

WI(r) )
V0

2

p
exp(-

2(r - σ)
L ) xπ

xλT
exp(-

(∆GI + λ)2

4λT )
) U(r)e-(∆GI+λ)2/4λT (1.3)
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tion and free energies of ionization,T is the temperature in
energy units (kB ) 1), andσ is the closest approach distance.
Unfortunately, the very first fitting of the exponential model to
the transfer kinetics also led to confusion. It was done by
studying the quenching of excited pheophytina by toluquinone
in solvents of different viscosity.25 The best fit for these data
was obtained atWc ) 1.8× 1010 s-1, σ ) 4 Å, andl ) 5.4 Å.
This value ofl is abnormally large, not to mentionL that should
be even twice as large.8

The Marcus rate (1.3) was also used for fitting the entire
quenching kinetics, but the authors failed to find the unique
values of two fitting parameters,V0 and L, in low viscosity
solvents.19 Only for high viscosity ethylene glycol they were
able to fix reasonable values, but the choice of ethylene glycol
was inappropriate for the reasons presented in ref 26 and
confirmed later.8 To reduce the number of parameters,L was
arbitrarily put as 2 Å in ref 27 since this is “a value usually
admitted in the literature”. Such a choice allowed the authors
to fit closely the transient quenching kinetics with rather small
V0 ) 6 ÷ 7 meV.

However, the first successful attempt to estimatel from an
unconditional fitting of the theory with an exponential rate to
the real data was accomplished only recently.8 The progress in
experimental techniques made possible much more accurate
investigation of the electron transfer between excited rhodamine
3B in the excited state andN,N-dimethylaniline in the normal
Marcus region. It was studied in seven solvents of different
viscosities.28 The theoretical interpretation of the results was
based on the analysis of quenching kinetics that obeys the
universal asymptotic law:

where D is the coefficient of encounter diffusion,RQ is the
effective quenching radius, and

is the ratio of excitation populations with and without quench-
ers: N(t, c) andN(t, 0) ) N(0) exp(-t/τD). The last term in eq
1.4 contributes to the nonstationary (transient) kinetics, which
is not negligible over all times studied experimentally. The
significant overestimation ofRQ as well asl in ref 25 resulted
from ignoring this very term in the course of the fitting.

The proper extraction ofRQ from the experimental data, made
in ref 8, allowed authors to fit the quasicontact and exponential
models to the diffusional dependenceRQ(D) getting from it a
reasonable value ofl ) 0.85 Å.8 Later a similar asymptotic
analysis of transfer kinetics was employed to perylene quenched
by N,N′-dimethyl-aniline in a dimethyl sulfoxide (DMSO)-
glycerol mixture whose viscosity changes with composition.29

Varying only l it was found from the best fit:l ) 0.81 Å, Wc

) 29.12 ns-1. The transfer in this system also proceeds at
relatively small∆GI < λ, that is in the normal Marcus region.
ThereWI(r) monotonically decreases with distance and can be
modeled with the exponential function of eq 1.2.3

Here we at first turn to a reaction in the inverted region carried
out by a strong electron acceptor, tetracyanoethylene (TCNE).
The latter allowed Rehm and Weller to get the most exergonic
points of their famous plot, although with other fluorophores.30

The quenching of perylene (the lifetimeτD measured after argon
bubbling is 4.34 ns in our experiments) also occurs deeply in
the inverted Marcus region where∆GI(σ) > λ(σ). At so high
an exergonicity,WI(r) given by eq 1.3 passes through the
maximum shifted out of contact,3 so that even in the kinetic

limit the reaction is remote, not to mention the diffusion-
controlled ionization. However, we will demonstrate that the
fitting of the experimental data with only this bell-shaped rate
is impossible but becomes plausible if additional near contact
quenching is added.

The origin of such an additional quenching may be attributed
to parallel electron transfer to the excited state of a cation radical
as suggested in ref 30. This transfer is much less exergonic and
therefore occurs in the normal Marcus region, near the contact:

Alternatively, one can consider the multichannel transfer to
numerous vibronic sublevels of the ground electronic state of
the ion radicals. The total rate of their production through all
the vibronic channels is broader and located closer to the contact
than the rate (1.3):3,31,32

where S ) λq/pω, while ω is the frequency andλq is the
reorganization energy of the quantum vibration. Since there is
no straight evidence in favor of one of these two possibilities
we will sequentially consider both of them.

In fitting the real data, provision should be made for saturation
of the ionization rate at short distances. There the tunneling
can be so fast that the limiting stage becomes the diffusional
motion along the reaction coordinate to the crossing point.33,34

In polar solvents, this is the so-called “dynamical solvent effect”
limited by the longitudinal relaxation of polarization.35 Taking
into account this effect the single channel rate takes the
following form:36,37

The upper limit of the rate,τ-1, is different for activationless
(∆GI ) 0)33 and highly activated reactions (∆GI . T),35 but
we will use the interpolation, which is reasonable between these
two limits where most of our experimental data falls:38

Here τL is the longitudinal relaxation time of the solvent
polarization, which assists the electron transfer. For the mul-
tiphonon rate (1.7), the generalization is straightforward:

The saturation effect establishes the upper limit for the Arrhenius
pre-exponentW0, which is lower, the slower the dielectric
relaxation. In Figure 1 we demonstrate how this limit is reached
for a few solvents whose 1/τL values were tabulated in ref 39.
At the shortest interparticle distances all the curves are
significantly lower than the tunneling rate,U(r), especially those
with long τL. This difference strongly reduces the total rate of

ln P ) -c[4πRQDt + 8RQ
2xπDt] at t f ∞ (1.4)

P(t) ) N(t, c)/N(t, 0) ) R(t) exp(t/τD) (1.5)

WI(r) ) U(r)∑
0

∞

e-SS
n

n!
exp[-

(∆GI + λ + pωn)2

4λT ] (1.7)

WI(r) )
U(r)

1 + U(r)τ
e-(∆GI+λ)2/4λT ) W0 e-(∆GI+λ)2/4λT

(1.8)

1
τ

) 1
4τL

x λ
πT

(1.9)

WI(r) ) ∑
0

∞ U(r)e-SSn

n! + U(r)τe-SSn
exp[-

(∆GI + λ + pωn)2
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activated electron transferWI(r), which is monotonic in the
normal Marcus region (Figure 2A) and has the bell shape in
the inverted one (Figure 2B).

The outline of this article is as follows. In the next section,
the general formalism of DET will be briefly outlined. In section
III the short, moderate, and long-time kinetics will be fitted
sequentially with single-channel, double-channel, and multi-
channel models. In section IV, the experimental dependencies
of the product quantum yields on quencher concentration will
be compared with the theoretical ones specified with the transfer
parameters obtained from the best fit to the kinetic data. In
section V, we calculate with the same parameters the concentra-
tion dependence of the quantum yields of all the products of
ionization. The results obtained are summarized in Conclusions.

II. Differential Encounter Theory of the Phenomenon

In the DET developed in refs 12-17 and reviewed in ref 3
the quenching kinetics is given by the general expression

where the time dependent rate constant is

The pair correlation functionn(r, t) takes into account that the
remote transfer running with the rateWI(r) is accelerated by
the encounter diffusion represented by operatorL̂:

If there is no inter-reactant interaction then the diffusional
operatorL̂ ) D∆, while the initial and the boundary conditions
to eq 2.3 take the following form:

Over rather long times, the quenching is accelerated by
diffusion and the corresponding asymptotic expression for the
ionization rate constant acquires the following general form:

By substituting expression (2.1) with thiskI(t) into eq 1.5
one reproduces the asymptotic formula (1.4) successfully fitted
to the long time kinetics. But at shorter times this asymptote is
preceded by the static quenching with the rate constant followed
from eqs 2.2 and 2.3 atL̂ ) D ) 0:

The quenching always starts with the maximal (kinetic) rate
constant

but then develops with retardation, which is the sharper, the
higher is the mean square value

The asymptotic analysis based on eq 2.5 or (1.4) is determined
by the universal parameterRQ defined by the far periphery of
WI(r) exponentially decreasing with distance. It can be ap-
proximately found from the equation:40

which is not sensitive to that part ofWI(r) which is deeply inside
the quenching sphere of radiusRQ. On the contrary, the static
quenching starts from the maximal values ofWI(r) and lasts
until all the interior of the quenching sphere is burned. To
discriminate between the different models ofWI(r) the strategy
of fitting employed in refs 8 and 29 should be changed. Here
we will start by analyzing the static quenching and only after
that the late diffusional quenching, as well as the total effect
represented by the fluorescence and products quantum yields.

III. Experimental

The excited-state dynamics of perylene (Pe) has been
measured by fluorescence upconversion (FU), using a setup
already described in ref 41. Excitation was performed at 400
nm using the frequency-doubled output of a Kerr lens mode-
locked Ti:sapphire laser (Tsunami, Spectra-Physics). The full
width at half-maximum of the instrument response function was
210 fs.

Pe was recrystallized from benzene before use. TCNE was
recrystallized from chlorobenzene and sublimed twice. Aceto-
nitrile (acetonitrile, UV grade) was used as received. All the
chemicals were from Fluka. The sample solutions were placed
in a spinning cell with an optical path length of 0.4 mm. The
absorbance of the sample at 400 nm was around 0.1, corre-
sponding to a Pe concentration of the order of 10-4 M. All
sample solutions were bubbled with Ar for 15-20 min before
use. After the measurements, no significant sample degradation
was observed.

The fluorescence dynamics of Pe in acetonitrile was measured
with various TCNE concentrations: 0, 0.01, 0.08, 0.16, 0.32,
and 0.64 M. The fluorescence dynamics of each solution was
measured of five different time windows: 6, 35, 120, 300, and
1200 ps. To correct for any misalignment of the optical delay
line and to have a signal intensity proportional toP(t) from eq
1.5, the fluorescence time profiles at [TCNE]* 0 were divided
by the corresponding time profile at [TCNE]) 0. This
procedure was performed with the data acquired in all time
windows except the shortest one. The fluorescence dynamics

Figure 1. The Arrhenius pre-exponent as a function of distance for
four solvents with different 1/τL values: (1) acetonitrile (2.0 ps-1), (2)
acetone (1.2 ps-1), (3) methyl acetate (0.6 ps-1), (4) benzonitrile (0.21
ps-1). Other parameters:λ0 ) 1.15 eV;V0 ) 62 meV;σ ) 5 Å.

kI(t) ) ∫WI(r) e-WI(r)t d3r ) k0 - 〈WI
2〉 t + ‚‚‚ (2.6)

k0 ) kI(0) ) ∫WI(r) d3r ) 〈WI〉 (2.7)

〈WI
2〉 ) ∫WI

2(r) d3r (2.8)

WI(RQ)l2/D ) 1

R(t) ) exp(-t/τD - c∫0

t
kI(t′) dt′) (2.1)

kI(t) ) ∫WI(r)n(r, t) d3r (2.2)

n̆ ) -WI(r)n + L̂n (2.3)

n(r, 0) ) 1 and
∂n
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|r)σ ) 0 (2.4)

kI(t) ) 4πRQD[1 + xRQ
2

πDt] at t f ∞ (2.5)
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was measured at 495 nm, where the effect of vibrational
relaxation is the smallest, as discussed in refs 42 and 43.

IV. Fitting Kinetics of Quenching after Pulse Excitation

From the system response to the short pulse excitation in the
presence and absence of quenchers, one can measure the
quenching kineticsP(t) given by eq 1.5. It is sharper the higher
the quencher concentration used (Figure 3A), but according to
the DET eq 2.1 the quantity

should be the same for all concentrations. In fact, when these
quantities are plotted against time all of them are practically
the same for any concentrations, until they decrease (Figure 3B).
However, each of them levels off approaching the level of noise.
The border time between the descending branch and horizontal
tail establishes the upper border of the credibility interval where
the data fit the theoretical dependence (4.1). These intervals
restricted by the vertical dashed lines are longer the smaller the
quencher concentration. At the lowest concentrations such
intervals are larger than that available for experimental study,
but the depth of the reaction within the latter is small. The most
suitable for fitting is the curve forc ) 0.16 M. It reaches the
same reaction depth at higher concentrations, but the integral
∫0

t kI(t′) dt′ is already as large as it is at lower concentrations.
Besides, it has the lowest noise-to-signal ratio.

A. Accumulation and Dissipation of Energy at the Shortest
Times.The pulse excitation to some vibrational sublevel of the
upper electronic state gives way to the fast vibrational relaxation,
simultaneous with the initial electron transfer. The latter
proceeds with the highest (kinetic) rate constant (2.7) that allows
it to compete with the vibrational relaxation. This competition
can be represented by the set of model kinetic equations:

where N1 and N are the populations of initial and final
(fluorescent) vibronic states, andτV is the vibrational relaxation
time in the sub-picosecond scale. As a result, we have the
following single equation for accumulation and dissipation of
fluorescent particles:

The solution to this equation,

describes both the ascending and descending branches of the
initial kinetics locating the maximum between them.

Figure 2. The ionization rates in acetonitrile with and without taking account for the transfer saturation (solid and dashed lines correspondingly).
(A) Transfer in the normal Marcus region,∆GI ) -0.6 eV. (B) Transfer in the inverted Marcus region,∆GI ) - 2.14 eV. The rest of the
parameters are the same as in the previous figure.

Figure 3. (A) The quenching kinetics at different concentrations of
electron acceptors given in molar (numbers above curves). (B) The
same but in an anamorphosis, extracting the universal time dependence
of ∫0

t kI(t′) dt′. The vertical dashed lines indicate the upper borders of
the credibility intervals for the highest concentrations.

ln P(t)
c

) -∫0

t
kI(t′) dt′ (4.1)

Ṅ1 ) - 1
τV

N1 N1(0) ) N0 (4.2a)

Ṅ ) 1
τV

N1 - ck0N N(0) ) 0 (4.2b)

Ṅ )
N0

τV
e-t/τV - ck0N (4.3)

N )
N0

1 - ck0τV
[e-t/τV - e-ck0t] (4.4)
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In fact, the vibrational relaxation is not completely damped,
as seen from Figure 4 which shows the fluorescence decay
measured by the FU. Using the aperiodic model of vibrational
relaxation (4.4) for fitting to very short data (up to 6 ps) we are
looking mainly for the quenching parameterk0 and will return
back to the coherent vibrations afterward. The fitting was done
in two ways: with and without convolution with the instrumental
response function (IRF). They both gave similar results as shown
in Table 1.

An example of the fit to the highest concentration of
quenchers,c ) 0.64 M, is given in Figure 5. It is better to
include IRF in the fitting procedure, but the final values ofk0

are not affected too much. Since the further fitting of the longer
time behavior will be done without convolution we set for it

There is an approximately linear increase in the vibrational
relaxation rate 1/τV with quencher concentration that could be
attributed to the intermolecular contribution to this rate. It can
be ascribed to the vibrational energy transfer from Pe to TCNE
(see Supporting Information).

B. Fitting the Moderate and Long Times with a Single-
Channel Rate. If there is only the single channel of electron
transfer (to the ground state of the ion pair), then in highly polar
solutions ther-dependence of the ionization free energy is
insignificant and according to the energy scheme of Figure 6
we have:

The “outer-sphere” reorganization energy at contact is half at
infinite separation:3

It depends on the interparticle distance at contactσ and
contact reorganization energyλ0 ) λ(σ). In acetonitrile

is an average distance between the contacting Pe and TCNE.
In fact, it varies between 3.5 and 6.8 Å, depending on their
coordination, but the effects of chemical anisotropy will be
ignored here. Assuming a reasonable value for

we can find the remaining fitting parameterV0 from the kinetic
reaction constant (2.7), whose value is already fixed in eq 4.5.
In the case of a single channel and weak transfer proceeding
with the rate eq 1.3,V0

2 is directly proportional tok0:

Figure 4. The FU time profiles measured with the time increment
0.062 ps at the same quencher concentrations as in the previous figure.

TABLE 1

without convolution with convolution

c/M τV/ps k0/M-1 ps-1 τV/ps k0/M-1 ps-1

0.08 0.282 0.20 0.215 0.25
0.16 0.257 0.20 0.200 0.22
0.32 0.255 0.20 0.186 0.23
0.64 0.183 0.20 0.119 0.21

Figure 5. Fitting the very fast kinetics of accumulation and dissipation
of the excited electronic state with (middle) and without (bottom)
convolution with IRF. The residual of the former is shown at the top.

Figure 6. The energy diagram for the pair perylene+ TCNE before
(left) and after (right) the electron transfer.

λ0 ) 1.15 eV, andσ ) 5 Å (4.7)

L ) 1.24 Å (4.8)

V0
2 )

pk0/∫exp(-
2(r - σ)

L ) xπ

xλ(r)T
exp(-

[∆Gi + λ(r)]2

4λ(r)T ) d3r

k0 ) 0.2 M-1 ps-1 ) 322.6 Å3/ps (4.5)

∆GI(r) ≈ ∆GI(σ) ) ∆Gi ) -2.14 eV

λ(r) ) λ0(2 - σ/r) (4.6)
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It follows from this relationship that

This value ofU0 ) U(σ) greatly exceeds the upper limit of the
transfer rate established by

whereτL ) 500 fs (for acetonitrile). The inequality,Uτ|r)σ .
1, clearly indicates that the saturation of electron transfer near
the contact cannot be ignored.

Using the cropped transfer rate (1.8) instead of (1.3) in eq
2.7 one can find by a few iterations the appropriateV0

2 andU0.
They appear to be larger than the previous ones to provide the
same value ofk0:

Using this parametrization, we tried to fit the kinetic data at
moderate and long times having for our disposal only one fitting
parameter: the diffusional constantD. The best results obtained
for the solution with the smallest noise-to-signal ratio are shown
in Figure 7. At smallD, the quenching at moderate times is
fitted well, but at long times is greatly underestimated. At large
D, everything is quite the reverse: the quenching at long times
is well approximated, but overestimated at moderate times. This
is an alternative consistent with the conclusion made by Fleming
et al.18

However, it follows unambiguously from the comparison of
the short and long time results that the initial kinetic rate constant
k0 ) 322.6 Å3/ps is significantly larger than the final stationary
rate constant

which is approximately 31.4 Å3/ps. Such a nonstationarity of
transfer is the direct indication that the quenching is under
diffusion control andki ≈ 4πσD , k0. This finding is in conflict

with what was found when Tachiya and Murata fitted the free
energy Rehm-Weller dependence of the Stern-Volmer con-
stant that they identified withki.44 According to their Figure 2,
the transfer in the most exergonic systems is kinetic, that iski

≈ k0 at any time. Since our system is one of those it should be
expected thatk0 , kD which is not the case. Being free in
choosing the fitting parameters the authors made their conclusion
assuming that

Making this choice they greatly underestimate the kinetic rate
constantk0 which is in their work 42 Å3/ps, that is almost an
order of magnitude smaller than that in eq 4.5 obtained
experimentally.

Another possible cause of the discrepancy is the “closure
approximation” used in this work. It is not much better than
the primitive contact approximation and is especially bad in
the inverted region where the transfer is essentially remote.
Fortunately, this approximation is not obligatory and had been
ignored in the preceding work of Marcus and Siders,45 who
applied to the similar data analysis the regular encounter
theory.15-17 They also demonstrated in their Figure 1 that atV0

) 4.5 meV andλ0 ) 0.56 eV the reaction falls under kinetic
control when the exergonicity of the transfer exceeds 1.5 eV.
However, according to their Figure 2 the reaction remains
diffusional up to∆Gi ) - 2.2 eV if

This choice is much closer to our own although it is made for
another system studied in refs 46 and 47. Marcus and Siders
proposed also another way to make highly exergonic reactions
diffusional, by taking into consideration the parallel transfer to
the excited electronic state of the product. Until now this was
a dominant idea for how to explain the too wide diffusional
plateau obtained by Rehm and Weller.3 However, it will be
shown in the next subsection that the electronic excitation which
occurs near the contact is much less helpful if one accounts for
electron-transfer saturation which was ignored by Marcus and
Siders45 as well as by Tachiya and Murata.44

C. Fitting the Double-Channel Model. Looking for all
possible interpretations of our data, we should take into account
that the perylene cation has a number of low lying excited
electronic states and at least three of them are energetically
accessible from the excited reactant (Figure 6). Therefore, the
formation of the cation in one of these states can compete with
creation of the ground-state cation.48-50 There are also some
indications of excited ion generation in the course of highly
exergonic fluorescence quenching studied in other systems:
cyanoanthracene (A) and aromatic amines or aminobenzenes
(D).51,52In all such cases there are parallel channels of ionization,
to the ground state (i ) 0) and to the excited charged products
(i ) 1, 2, ...). In our system, the transfer is exergonic to only
three states. Taking them into account, one should represent
the total transfer rate as a sum over parallel channels:

All partial rates have the same form (1.3), but different∆GI ≡
∆Gi and tunneling matrix elementsVi. All of them contribute
to the kinetic rate constant

Figure 7. Fitting of single channel model to moderate (top) and long
time (bottom) quenching kinetics atc ) 0.16 M. Dashed lines obtained
choosingD ) 2.45× 10-5 cm2/s; solid lines represent the best fit with
D ) 2.95× 10-5 cm2/s (σ ) 5 Å).

V0 ) 89.8 meV and U0 )
V0

2

p

xπ

xλ0T
) 127 ps-1

1
τ(σ)

) 1
4τL

x λ0

πT
) 1.9 ps-1 (4.9)

V0 ) 138 meV and U0 ) 300 ps-1 (4.10)

ki ) kI(∞) ) 4πRQD (4.11)

V0 ) 12.4 meV

V0 ) 23 meV and λ0 ) 0.86 eV

WI(r) ) ∑
i)0

3

Wi(r) (4.12)
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Borrowing ∆Gi from the energetic scheme of Figure 6 we
reproduced thek0 value (4.5) with

Although tunneling to all the excited states was assumed to be
equally strong their contributions tok0 are different because of
the different exergonicity of transfer.

As seen from Table 2 even at relatively highVi the
contributions from the two upper states does not exceed 3%.
Therefore, they can be ignored in further investigation. Leaving
only the lowest excited-state, we arrive at the double-channel
model with the total rate

where

are given by the general Marcus formula (1.3) but with partial
arguments:

∆G1 is the free energy of transfer to the lowest excited level of
perylene cation (Figure 6).53

In the double-channel model onlyV0 and V1 should be
considered as fitting parameters. In fact, we have only a single
new parameter,V1/V0, provided

is kept equal to that in eq 4.5. After finding this ratio from the
best fit to the intermediate times, we adjusted alsoD to get the
right slope of the longest quenching. The last procedure does
not affect too much either the short or intermediate time
behaviors which are kinetic and quasistatic in nature, that is,
weakly sensitive to particle motion. At the same time, an
inclusion of the excited-state production facilitates the near
contact quenching, making the fitting much better, provided

The results shown in Figure 8 are actually much better than
those achieved in Figure 7 with a single channel model.

The results of such a successful fitting allow specifying the
time development ofkI(t) at all times, from its kinetic value,
k0, up to the stationary one,ki (Figure 9). The slope of thekI(t)
dependence att ) 0 is the quantitative characteristic of the ln
P(t) curvature. It is given by the mean square rate (2.8), which
is very sensitive to the shape of the particularWI(r) dependence.
For any remote transfer, it is finite but turns to∞ for the contact
kI(t) of Collins and Kimball:

where kD ) 4πσD is the diffusional rate constant,R )

x(D/σ2)(1 + (k0/kD)) and

As seen from Table 3 for the double-channel model the value
|k̇I(0)| ) 〈WI

2〉 is a bit smaller than for the single-channel model
that we failed to fit well. The latter can be considered as the
“zero-phonon” model (S ) 0). In the next subsection, we will
demonstrate that for the multiphonon rates (S) 1, 2, 3, ...) this
quantity even increases withS, to say nothing about the contact
model (〈WI

2〉 ) ∞). This hierarchy is marked in Figure 9.

The double-channel rate (4.15) is composed from two
components (Figure 10). The transfer saturation by the dynamic
solvent effect reduces mainly the near contact one, which is
responsible for the transfer to the excited state. The relative
contribution of this component into〈WI

2〉 is even smaller due
to the statistical weight 4πr2. Conversely, the role of another
component responsible for the transfer to the ground state is
dominant and more the further it is from the contact. At
relatively slow diffusion, the outer branch of this component

k0 ) ∑
i)0

3 ∫Wi(r) d3r ) ∑
i)0

3

Ki(∆Gi) (4.13)

V0 ) 123 meV and Vi ) 138 meV i ) 1, 2, 3 (4.14)

WI(r) ) W0(r) + W1(r) (4.15)

W0 ) W(∆G0, V0, L) and W1 ) W(∆G1, V1, L)

∆G0 ) - 2.14 eV and ∆G1 ) - 0.60 eV

k0 ) ∫[W0(r) + W1(r)] d3r (4.16)

V0 ) 123 meV V1/V0 ) 1.12 D ) 3.05× 105 cm2/s
(4.17)

kI(t) ) ki
con[1 +

k0

kD
eR2terfc(Rxt)] (4.18)

TABLE 2

channels 0 1 2 3

Ki [Å3/ps] 273 42.3 7.21 0.211
Ki/k0 [%] 84.6 13.1 2.23 0.07

Figure 8. The fitting of the double-channel model to the quenching
kinetics atc ) 0.16 with the parameters given in eq 4.17.

Figure 9. The double-channel “rate constant”kI(t) (red line) approach-
ing its stationary value,ki, shown by the dotted red line. The red dashed
line indicates the tangent to this curve att ) 0 whose absolute value
is -k̇I(0) ) 〈WI

2(r)〉. This value for the multiphonon transfer (dashed-
dotted blue lines) increases withS ) 0, 1, 3, and turns to∞ in the
contact approximation. The latter is shown by the black line approaching
its stationary value,ki

con (dotted line).

ki
con )

k0kD

k0 + kD
(4.19)
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determines the quenching radiusRQ, as well as the long-time
asymptote of the rate constant (2.5) expressed through it.

It is of interest to compare the true value ofki ) kI(∞) with
its contact estimate (4.19). UsingkD from Table 3 we have

These results clearly indicate that the ionization is very close
to the diffusional limit and rather far from the kinetic limit. In
the latter case,k(t) ≡ k0 should be the horizontal line shown in
the same plot. The deep reduction of the rate constant with time
is the clear manifestation of diffusional control over ionization.
On the other hand, under diffusional control one always has
RQ > σ and ki > ki

con. According to Table 3,RQ and ki are
almost twice as much asσ andki

con.
D. Fitting the Multiphonon Model. There are at least four

candidates for assistance of the electron transfer: two modes
of Pe: 800 and 3100 cm-1, and two of TCNE: 1100 and 2200
cm-1 (see Figure 2S, Supporting Information). Choosing the
low-frequency ones, we compared in Figure 11 their shapes at
different electron-phonon interaction measured by parameter
Sof the multiphonon rate (1.10). All of them are normalized to
k0 ) ∫WI(r) d3r. This value is fixed by eq. 4.5 while the rest of
characteristics change withS. The general conclusion is that
with growing S the rate maximum increases and shifts toward
the contact. Approaching the contact is faster at a larger
frequency of the assisting mode. Atω ) 1100 cm-1 the rate
maximum disappears atS ) 3 and the quenching, proceeding
with quasiexponentialWI(r), is maximal at the contact. Figure
12 demonstrates that〈WI

2〉 monotonically increases withSand
the sharper, the higher the frequency of the assisting mode. For
the lowest two modes〈WI

2〉 grows almost linearly withS.
At S ) 0 any multiphonon rate reduces to a single-channel

one which has the minimal〈WI
2〉 ) 32 Å3/ps2. At largerS the

multiphonon rates are placed between the latter and the contact
one which has〈WI

2〉 ) ∞ (see Figure 9). Therefore, in fitting
our data all multiphonon models are worse than the single-
channel one, let alone the double-channel model whose〈WI

2〉
) 29.6 Å3/ps2 due to the most uniform rate distribution between
σ and RQ. Judging from this criterion, we conclude that the
double-channel model provides the ultimate explanation of the
transient kinetics obtained in our system.

Nonetheless, it is worthy of notice that the first experimental
evidence of the diffusional transfer at high exergonicity was
obtained by direct study of transient effects54 fitted with the
multiphonon model. The obtained kinetic rate constantsk0 ≈
1011-1012 M-1s-1 were shown to be much larger than diffu-
sional ones (2× 1010 M-1 s-1) all over the Rehm-Weller
plateau, up to∆Gi ) - 2.2 eV. The attempts to explain this
fact theoretically were undertaken using the Collins and Kimball
contact approximation.54,55Since〈WI

2〉 ) ∞ in this approxima-
tion, the transient kinetics could not be well reproduced. This
was not recognized as a significant drawback because the
measurements on the nanosecond time scale did not allow one
to study the kinetics in all the details, as we did. The
disadvantage of the contact approximation manifested itself only
in the diffusion control limit. There the stationary rate constants
calculated with eq 4.19 were systematically smaller than the
real ones:kD ) 4πσD < 4πRQD.

Although both the transfer kinetics and the stationary rate
constantki were fitted in refs 54 and 55 with the classical contact
model, the single parameter of this model,k0, was calculated
using in eq 2.7 an essentially noncontactWI(r).55 In this way,
the authors carefully accounted for not only multiphonon
transfer, but also for the dynamic solvent effect taking

The upper limit for the rate (1/τ) as well asω are almost the
same as ours whileS is surprisingly large. Since the authors
did not care about the〈WI

2〉 values they admitted this choice.
But the most important difference results from the intention

to stretch the region wherek0 is larger thankD, up to the highest
exergonicity of transfer. To do this Kakitani et al. revised the
common definition of the reorganization energy space depen-
dence, presenting it in the following form:

ConsideringΛ andΣ as fitting parameters they found for them
the following values:

Both of them are noticeably larger than their analogues (4.7)
obtained from the available experimental data. Especially
surprising is thatΣ > σ. This relationship allowsλ(r) to vary
from 0.49 eV at contact, to 2.7 eV at infinite separation, while
the conventional formula (4.6) allows one only to double the
minimal value.

Such an unphysical stretching ofλ(r) was taken but not for
the best fit of the high exergonicity transfer. As we ensured, it
can be done without any variation of the conventional space
dependence ofλ, eq 4.6. The stretching was necessary to fit
with the same theory, the ascending branch of the Rehm-Weller
free energy dependence, where the transfer is endergonic (∆Gi

> 0). In fact, the same objective was also pursued by other
authors cited above.44,45 Unfortunately, it is unattainable. DET
used by all of them does not hold at∆Gi J 0. DET is good for

TABLE 3

c ) 0.16 M double-channel single-channel
V0 (meV) 123 138
V1/V0 1.12 0
〈WI

2〉 (Å3/ps2) 29.6 32
D × 105 (cm2/s) 3.05 2.45÷ 2.95
RQ (Å) 8.25
ki ) 4πRQD (Å3/ps) 31.6
kD ) 4πσD (Å3/ps) 19.2

Figure 10. The rates of double-channel electron transfer with (red)
and without (blue) tunneling saturation (“dynamic solvent effect”). Their
components (the rates of tunneling to the ground and excited ion states)
are shown by the dashed lines. The vertical dotted line indicates the
quenching radii,RQ.

ki
con ) 18.1 Å3/ps) 0.94kD ) 0.056k0 (4.20)

1
τ

) 5 ps-1 ω ) 800 cm-1 S) 3

λ(r) ) Λ(2 - Σ/r) at r > σ ) 4.4 Å (4.21)

Λ ) 1.35 eV and Σ ) 7.2 Å (4.22)
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high exergonicity (-∆Gi . T) when the backward transfer from
ion pair to initial excited state is negligible, but DET is incapable
of accounting for the reversible electron transfer between the
excited reactants.56 Accounting for the backward transfer
requires a fundamentally different technique known as integral
encounter theory (IET). It was employed for the ascending
(endergonic) branch of Rehm-Weller dependence in a few
recent works.57,58 As was shown, not only the shape but the
very position of the ascending branch depends on the relative
strength of the radical ion pair recombination (after spin
conversion in the cage or in the bulk) to either the starting
excitation or excited triplet product. The rate of the latter
determines the position of the ascending branch which is
different for different families of the reactants. This was called
the “multiple Rehm-Weller plot” in ref 59 where it was
observed experimentally. At least “two different plots were
clearly observed corresponding to the aromatic and olefinic
compounds”. This proves that fitting the data for particular
systems, endergonic or exergonic, is preferable to trying to find
a unique explanation for all of them together.

V. Concentration Dependence of the Stern-Volmer
Constant. The relative quantum yield of the fluorescence is
generally defined through the system response to instantaneous
excitation (1.5) and presented in the form of the Stern-Volmer
law:3

Its “constant” is in fact the concentration-dependent function
κ(c), but in the limit of small concentration it follows from the
concentration expansion of eq 5.1 withR(t) from eq 2.1 that

where

is an “ideal” Stern-Volmer constant. As long asκ ) κ0 ) const
the original Stern-Volmer law

is linear in concentration of quenchers.
However, the factual nonlinearity of eq 5.3 resulting from

the κ(c) dependence was many times demonstrated experi-
mentally.60-64 We also illustrate it by Figure 13. To getη one
can either use the Laplace transformation of the experimental
quenching kineticsR(t) in eq 5.1, or employ the conventional
stationary methods for the straightforward measuring of this
quantity. Using both these ways, we obtained the results which
are in conformity with each other and with those resulting from
the best theoreticalP(t) obtained with the double-channel model
and integrated in eq 5.1.

Unfortunately, such a conformity is just an illusion: the
presentation of data in these coordinates masks the problem. It
is visualized ifκ is extracted fromη and plotted as a function
of c. As seen from Figure 14 there is a pronounced difference
between the data obtained from the time-resolved (b) and the
stationary (f) experiments, not to mention the accuracy of the
latter which leaves much to be desired at smallc. The
coincidence is satisfactory only at the highest concentration
where the quenching is accomplished within the credibility time
interval and conversely it is the worst at the lowest concentration
when the long tail remains out of the interval available
experimentally (see Figure 3A). The integration within such a
limited time interval is equivalent to the sudden quenching of
all donors survived to the end of it. Therefore, the quenching

Figure 11. The rates of transfer accompanied by the vibrational excitation of Pe (left) or TCNE (right) at differentS) 0, 0.3, 1, 2, 3 in comparison
with single channel rate (S ) 0).

Figure 12. The S-dependence of〈WI
2〉 for the quantum modes of Pe

(b, 800 cm-1 andf, 3100 cm-1), and TCNE, (9, 1100 cm-1 and[,
2200 cm-1).

η )
∫0

∞
N(t, c) dt

∫0

∞
N(t, 0) dt

) 1
τD
∫0

∞
P(t) e-t/τD dt )

R̃(0)
τD

) 1
1 + cκτD

(5.1)

η ≈ 1 - cκ0τD

κ0 ) 1
τD
∫0

∞
e-t/τD k(t) dt (5.2)

1/η ) 1 + cκτD (5.3)
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constant at low concentrations is greatly overestimated ifP(t)
measured in an experimentally restricted time interval is
integrated in eq 5.1.

The same is true for the theoreticalκ if the integration of the
model P(t) in eq 5.1 is performed within the credibility time
intervals (0). The coincidence of theoretical and experimental
results is good for low concentration and a bit worse for the
higher ones where the data are more noisy. However, it is in
the range of the low concentration that the overestimation ofκ

takes place due to incomplete quenching within limited time
interval. Fortunately, the integration of the theoreticalP(t) in
eq 5.1 can be extended to infinity and this provides the most
reliable estimate of the quantity under study (red line in Figure
14). We see that this estimate made with the double-channel
model is in rather good agreement with the experimental results,
unlike the contact estimate ofκ (black line) obtained in the same
way with the Collins-KimballkI(t) from eq 4.18. As has been
already demonstrated with Stevens data (see Figure 4 in ref 65),
the contact approximation greatly underestimates the Stern-

Volmer constant, and this effect increases with growing
concentration. In fact, the popular contact approximation is
inapplicable to electron-transfer reactions especially in the
inverted region.

The main tendency established in ref 65 and seen in Figure
14 is an increase ofκ(c) from its “ideal” valueκ0 ) κ(0) to the
maximal one: κ(∞) ) k0. This conclusion is sustained by a
number of different theoretical methods compared in ref 65.
All of them except DET deal with the contact approximation
(L f 0). In this approximation, the ideal Stern-Volmer constant
was shown to be given by the following analytic expression:
66,68

Substituting into this relationship the correspondingk0 andD
values we obtain:

where

was found from Figure 14 by extrapolation of the theoretical
curve toc ) 0. It was known for very long that in some systems
even the ideal Stern-Volmer constant measured experimentally
can be twice as large as its contact estimate.67 Admitting the
quenching radiusR to be twiceσ, the discrepancy could be
understood in the framework of the extended contact theory.67

The latter differs from the original Collins-Kimball model only
by substitution ofR) σ/µ for σ, where the numerical parameter
µ can be rigorously defined throughWI(r), but only near the
kinetic limit (1 - µ , µ).8 However, such a phenomenological
extension of the contact model completely ignores the static
quenching and is not applicable to true diffusional quenching
(R - σ J σ), especially at high concentrations.

On the contrary, the present theory accounts for remote
transfer as it is. Some uncertainty is left only for the value of
the tunneling lengthL. It may be a bit larger or smaller thanL
) 1.24 Å yet employed. The best way to eliminate such an
uncertainty is to repeat the investigation in a number of solvents
of different viscosities as has been done already a few times.8,29

Varying the encounter diffusion coefficientD one can specify
the RQ(D) dependence which is sensitive to the model of the
transfer rate and especially to theL value.

As follows from comparison of eqs 5.4 and 4.19κ0
con > ki

con

in the diffusional limit, because the Stern-Volmer constant
accounts for nonstationary quenching whileki does not. The
same is true for the noncontact values of the same constants:
κ0 > ki (compare eqs 5.2 and 4.11). Sinceκ(c) > κ0 > ki > ki

con

the fitting of the Rehm-Weller κ(∆Gi), with the theoretically
calculatedki(∆Gi) and especially withki

con(∆Gi) dependence is
inconsistent. Although performed in almost all published works
it is incorrect in principle, but especially bad in the region of
the diffusional plateau. On the other hand, the values ofκ(∆Gi)
obtained and plotted without experimental control on quencher
concentrations can differ noticeably from what they are expected
to be, that is, from the idealκ0(∆Gi) dependence.

VI. Conclusions

We present the first successful fitting of the entire kinetics
of fluorescence quenching carried out by remote electron transfer

Figure 13. The nonlinear Stern-Volmer law for the quantum yield
obtained by integration of the experimental quenching kinetics within
the credibility intervals (b) and from the stationary measurements of
the quantum yield (f). The theoretical approximation of this law with
the double-channel (red line) and contact (black line) models.

Figure 14. The Stern-Volmer constants obtained from the stationary
(f) and time-resolved data (b) in comparison with the theoretical
predictions, following from the double-channel quenching kinetics
integrated over the credibility intervals (0) and up to infinite time (red
line). Black line: the similar result but for the contact kinetics integrated
over all times. Triangles (red and black): the ideal Stern-Volmer
constants for the double-channel and contact models.

κ0
con )

k0kD

kD + k0/(1 + xσ2/DτD)
(5.4)

κ0
con ) 20.4 Å3/ps) 0.527κ0 (5.5)

κ0 ) 38.8 Å3/ps
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in the inverted region. Our study covers three different time
scales studied with the appropriate techniques. It starts from
the initial accumulation of excitations during the action of the
light pulse, extends to a quasistatic electron transfer, and ends
by the final quasistationary quenching.

We proved that the simplest single-channel Marcus rate, as
well as its multiphonon analogues, do not allow fitting
satisfactorily both the initial and the final stages of quenching.
This can be done only with the double-channel model of transfer
(to the ground and excited electronic state of charged products).
Taking into account the saturation of the tunneling due to the
dynamical solvent effect and having in hand an additional fitting
parameter (the relative strength of the two channels), we fitted
satisfactorily the whole kinetics of quenching. Besides, the
experimentally found concentration dependence of the Stern-
Volmer constant was well fitted with the same double-channel
model and the same fitting parameters. Using this model, the
quantum yields of the ground and excited-state products of
transfer were also specified.

Two important conclusions follow from this investigation:
(i) The energy quenching by TCNE in liquid solutions is

controlled by diffusion.
(ii) This is essentially distant, noncontact quenching.
These conclusions provide the unambiguous answer to the

long standing question: Why is the TCNE Stern-Volmer
constant placed on the diffusional plateau of the famous free
energy gap law of Rehm and Weller,30 instead of being far below
it as was expected? In addition, the true value of the TCNE
Stern-Volmer constant is at least twice as large as obtained in
the contact approximation and this difference increases with
concentration. These facts show that the contact approximation
is just a convenient method of analytic calculations, but not a
proper tool for fitting to the real experimental data on transfer
kinetics, especially under diffusion control and at high concen-
trations of quenchers.
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The recombination dynamics of ion pairs generated upon electron transfer quenching of perylene in
the first singlet excited state by tetracyanoethylene in acetonitrile is quantitatively described by the
extended unified theory of photoionization/recombination. The extension incorporates the hot
recombination of the ion pair passing through the level-crossing point during its diffusive motion
along the reaction coordinate down to the equilibrium state. The ultrafast hot recombination vastly
reduces the yield of equilibrated ion pairs subjected to subsequent thermal charge recombination and
separation into free ions. The relatively successful fit of the theory to the experimentally measured
kinetics of ion accumulation/recombination and free ion yield represents a firm justification of hot
recombination of about 90% of primary generated ion pairs. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2140279�
I. INTRODUCTION

Most theories of electron transfer reactions in condensed
media, reviewed in Refs. 1,2, incorporate as input data the
thermal transfer rates between reactants separated by a dis-
tance r. These rates are controlled either by the tunneling
near the intersection point of reactant and product levels or
the system delivery to this point from the equilibrium posi-
tion. It is usually assumed that the system motion along the
reaction coordinate q proceeds faster than the modulation of
the interparticle distance r by encounter diffusion and that
the transfer always starts from the equilibrium position in the
reactant well. If one of these conditions is violated, the en-
counter theory has to account for the occurrence of the pro-
cess along r and q simultaneously. This has been done once
for a diffusion-controlled thermal ionization competing with
the diffusion along the reaction coordinate.3 In the present
work, we consider the geminate recombination of ion pairs
produced by bimolecular photoinduced electron transfer
�ionization�. The backward electron transfer proceeding be-
fore thermalization, known as “hot recombination,” does not
need any thermal activation and is therefore more efficient
and much faster than the subsequent thermal recombination
that conventional theories are confined to.

The chemical system investigated here consists of
perylene �Pe� in the first singlet excited state as electron do-
nor in the presence of tetracyanoethylene �TCNE� in aceto-
nitrile. The fluorescence quenching dynamics of Pe after ex-
citation by an ultrashort optical pulse was recently studied
both experimentally and theoretically.4 It was concluded that

a�Electronic mail: cfbursh@wisemail.weizmann.ac.il
b�Electronic mail: physic@vlink.ru
c�
Electronic mail: eric.vauthey@chiphy.unige.ch
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the electron transfer quenching results to both the ground and
the excited state of the ion pair with the rates W and W*,
respectively,

Pe+TCNE−←
WI

Pe* + TCNE→
WI

*

Pe+*TCNE−.

Using the abbreviations, D for Pe and A for TCNE, we con-
sider a four-level energy scheme �Fig. 1� including vibra-
tional sublevels �n=0, 1, 2, …� of the DA and D+A− states.
According to this scheme, both the excited and the ground
channels of ionization-recombination include hot transitions.
These two ionization channels are depicted separately in Fig.
2. It is useful to introduce the probabilities � and �* to pro-
duce equilibrated ion pairs through the ground and the ex-
cited channels, respectively. These pairs recombine thermally
to the neutral ground state.

The overall reaction scheme includes the recombination
of charged products assisted by vibrational and solvent relax-
ation. After the forward electron transfer generating the ion
pair in the ground state, the population moves down diffu-
sively and crosses a number of vibronic sublevels of neutral
products before reaching the equilibrium. A fraction 1−� of
the ion-pair population recombines during this stage, i.e.,
prior to thermalization, which is approximately equal to the
time scale of the longitudinal solvent relaxation �L. The re-
maining fraction of the ion-pair population ��� reaches equi-
librium and recombines thermally with a rate WR �see Figs. 1
and 2�. The fate of the excited ion-pair population is more
complex �see Fig. 2�. These ion pairs are born near contact,4

at a distance where electron transfer �either forward or back-
ward� is essentially limited by the solvent relaxation �1/�L�.
These ion pairs undergo charge recombination to one of the
vibrational states of the neutral products �dotted levels in

Fig. 1� with approximately this rate. This is followed by the

© 2005 American Institute of Physics10-1
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even faster intramolecular vibrational relaxation to the neu-
tral ground state. Afterwards, this neutral population passes
diffusively through the lowest crossing point with the
charge-transfer states where a fraction �* converts back to
the ion pair in the ground state. This ion-pair population
undergoes equilibration and thermal recombination with a
rate WR. Therefore, the equilibrated ion-pair population,
which recombines thermally, consists of the fractions � and
�* of the primary ion-pair populations generated by the par-
allel pathways ��A� and �B� in Fig. 2�, with hot recombina-
tion taking place earlier.

The dynamics of hot-electron transfer at a fixed interpar-
ticle distance has been extensively studied with the nonequi-
librium generalization of the golden rule formula.5,6 As the
transfer was assumed to be limited by weak electronic cou-
pling, the hot transfer yield was very small. In the limit of
weak transfer, almost all the neutral ground-state population
originating from the recombination of excited ion pairs un-
dergoes complete equilibration, i.e., �*�1. Similarly, the hot
charge recombination of the ion pairs formed in the ground
state D+A− is almost insignificant, i.e., ��1. As a result, this
equilibrated ion-pair population is the product of forward
electron transfer with the rate WI and should represent 89%–
96% of the total quenching product. However, the opposite
result was found experimentally:7 Only 10% of the quench-
ing product ends up as equilibrated ion pairs. This indicates

FIG. 1. Ground and excited electronic states of the reactants, DA and D*A,
and charged products, D+A− and D+*A−, at contact distance. The dotted lines
represent vibrational excited states �n=1, 2, 3�; the crossing points for for-
ward transfer are marked by circles ��� and for backward transfer by bullets
�•�. The arrows show the direction of the intramolecular vibrational
relaxation.
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that hot recombination is efficient and should thus be better
described with a stochastic approach8,9 than with perturba-
tion theory. When the reaction is limited by the diffusion to
the crossing point rather than by the electronic coupling, this
approach allows ��1 to be obtained. This is the so-called
dynamic solvent effect �DSE� regime realizing at the highest
friction. It was first studied in the Marcus normal
region8,10–15 and opposed to the other regimes �of moderate
and low friction� in a few reviews.16,17 Later on the same
analysis was done also for the Marcus inverted region where
DSE takes place as well.18

The simplest version of a stochastic theory accounting
for the DSE was first developed in Ref. 19. It neglects the
reversibility of the transfer in the crossing point, because of
the instantaneous decay of the transfer product and thus re-
duces the problem to a single level with a sink. A similar
approach to the problem was applied in Ref. 20 and then in
Ref. 21. There is, however, no necessity for such a simplifi-
cation. Using the most general stochastic approach to the
problem, the reversible transfer between three intersecting
levels, D*A, D+A−, and DA, has been studied in Ref. 22. The
arrangement of the energy levels in the case E of Fig. 4�a� in
Ref. 22 is exactly the same as in Fig. 1. In the case of fast
transfer, the kinetics of ion-pair decay consists of a fast hot
recombination and a subsequent much slower thermal
recombination.22 Perturbation theory holds only in the oppo-
site limit of the weak transfer where the hot stage is almost
eliminated �Fig. 4�b� of the same work�. The relationship
between stochastic and perturbation theories has been inves-
tigated in more detail in Ref. 23. In this work, the analyti-
cally estimated � value was shown to change from 0 to 1
when the transfer in the intersection point becomes more
efficient.

In the following, only the results of the last two
papers22,23 will be used. They will be incorporated in the
unified theory �UT� of irreversible photoionization and re-
combination, which accounts for the r dependence of all
electron transfer rates and the encounter diffusion of the
counterions in a Coulomb well.1 As the original UT �Refs.
24,25� deals with thermal electron transfer only, it will be
generalized to account for hot recombination prior to equili-
bration.

II. EXTENDED UNIFIED THEORY

Using a general approach, we consider a set of energy
levels accounting for the electronic states and their vibra-

FIG. 2. Energy-level schemes illustrating the two chan-
nels to the thermalized ion pairs. The grey areas stand
for the nonthermalized levels while the wavy arrows
represent vibrational and/or solvent relaxation.
AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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tional sublevels26 involved in the overall reaction scheme
�Figs. 2�. All energies are assumed to have a quadratic de-
pendence on the solvent coordinate q,

UD*A =
q2

4�
, UD+A−

�n� =
�q − 2��2

4�
+ �GI + n�� ,

UD+*A− =
�q − 2��2

4�
+ �GI

*, �1�

UDA
�n� =

q2

4�
+ �GI + �GR + n�� ,

where �GI�0 and �GR�0 are the free energies of the pri-
mary ionization and of the subsequent charge recombination
to the ground state, respectively, �GI

* is the free energy of
electron transfer to the excited ion pair �Fig. 1�, � is the
solvent reorganization energy, � is the frequency of intramo-
lecular vibrational mode, and � is the Planck constant. The
index n stands for the nth vibrational sublevel of the appro-
priate electronic state.

As the relaxation of the high-frequency modes of the
excited reactant is assumed to be much faster than all the
electron transfer reactions considered, and as ��	kBT, the
vibrational excited states are not included in UD*A. Moreover,
since the transition between UD*A and UD+*A− proceeds in the
Marcus normal region, the vibrational excited sublevels of
the latter are not considered as well.

The reaction scheme �Figs. 2� shows the two pathways
associated with the forward electron transfer to the ion-pair
ground state D+A− and to the ion pair in the excited state
D+*A−. These processes occur at the term crossing points q1

�n�

and q1
*, where UD*A�q1

�n��=U
D+A−
�n� �q1

�n�� and UD*A�q1
*�

=UD+*A−�q1
*� �Fig. 1�, that is, at

q1
�n� = � + �GI + n��, q1

* = � + �GI
*. �2�

Similarly, charge recombination from the ground and excited
ion states takes place at the crossing points q2

�n� and q2
*�n�

�Fig. 1�, where the energies of the D+A− and D+*A− states are
equal to those of the DA state, respectively, that is, at

q2
�n� = � − �GR − n��,

�3�
q2

*�n� = � + �GI
* − �GI − �GR − n�� .

It is also seen from Fig. 1 that the crossing points q2
�n� lie to

both the left and the right of q2
�0�, so the index n in the

equation for q2
�n� may be either positive or negative.

The positions of all crossing points depend implicitly on
r because

��r� = �0�2 − 
/r� �4�

depends on the inter-reactant distance. In acetonitrile the
contact reorganization energy is taken as

�0 = 1.15 eV, �5�

and the average contact distance between Pe and TCNE is
4

=5 Å.
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The bimolecular forward electron transfer �ionization� is
universally described by the differential encounter theory
�DET� equations,1,24,25

Ṅ = − ckI�t�N�t� − N�t�/�D, �6�

where c= �A�=const and N�t�= �D*� is the survival probabil-
ity of the excited donor, provided that initially N�0�=1, kI�t�
is the time-dependent rate constant of ionization, and �D is
the lifetime of the excited donor in the absence of quencher.

In the original formulation of DET, kI�t� is the average
product of the thermal ionization rate WI�r� and the pair dis-
tribution function of the reactants n�r , t�.1 To account for
dynamic solvent effects, we extend the coordinate space to
include the solvent coordinate q as follows.3

kI�t� =� wI�r,q���r,q,t�dq d3r , �7�

where wI is the r- and q-dependent rate of ionization and
��r ,q , t� is the distribution function of the D*A pairs in the
extended coordinate space. The latter obeys the following
equation:3

���r,q,t�
�t

= − wI�r,q���r,q,t� + �D̂ + L̂���r,q,t� , �8�

where the operator of encounter diffusion of the neutral re-
actants is

D̂ =
D

r2

�

�r
r2 �

�r
, �9�

D being the encounter diffusion coefficient, and

L̂ =
1

�L
�1 + q

�

�q
+ 2�kBT

�2

�q2� �10�

is the diffusion operator in the solvent coordinate q. �L is the
longitudinal dielectric relaxation time of the solvent.

Since there are several parallel channels of ionization at
the points q1

�n� and q1
*, the total rate wI�r ,q� is

wI�r,q� = 	
n

wI
�n��r,q� + wI

*�r,q�

= 	
n

2�VIn
2 �r�

�
�q − q1

�n��r��

+
2�VI

*2�r�
�

�q − q1
*�r�� , �11�

where VI�r� and VI
*�r� are the electronic coupling constants

between the D*A and D+A− states and between the D*A and
D+*A− states, respectively. The quantity VIn

2 �r� includes the
Franck-Condon factor for the vibrational transition 0→n,

VIn
2 �r� = VI

2�r�
e−SISI

n

n!
, �12�

where SI=�iI /��, �iI being the reorganization energy of
intramolecular vibrational mode for the electron transfer

*
processes from D A. The electronic coupling constants VI�r�
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and VI
*�r� are assumed to decrease exponentially in r space

with the characteristic decay length LI,

VI�r� = VIe
−�r−
�/LI, VI

*�r� = VI
*e−�r−
�/LI. �13�

The accumulation and decay of the ion pairs produced
by ionization can be studied within UT �Ref. 1� after its
proper generalization. We first introduce the distribution
functions in the extended coordinate space ��r ,q , t� and
�*�r ,q , t� for the ion pairs in the ground and excited states,
and ��r ,q , t� for the neutral pairs in the ground state DA.
The time evolution of these functions obeys the following
diffusion equations:

��

�t
= 	

n

wI
�n�N�t�� + 	

n�0
wR

�n�� − 	
n�0

wR
�n��

+ �D̂cs + L̂cs�� , �14a�

��*

�t
= wI

*N�t�� + wR
*�0�� − 	

n�0
wR

*�n��* + �D̂cs + L̂cs��*,

�14b�

��

�t
= − wR

*�0�� + 	
n�0

wR
�n�� − 	

n�0
wR

�n�� + 	
n�0

wR
*�n��*

+ �D̂ + L̂�� , �14c�

with

D̂cs =
D

r2

�

�r
r2e−Uc/kBT �

�r
eUc/kBT, �15�

L̂cs =
1

�L
�1 + �q − 2��

�

�q
+ 2�kBT

�2

�q2� , �16�

where Uc�r�=−e2 /��r�r is the Coulomb potential accounting
for the spatial dispersion of the dielectric constant.

In Eqs. �14�, the recombination rates wR
�n��r ,q� and

wR
*�n��r ,q� through the ground and excited channels are

wR
�n� =

2�VRn
2 �r�
�

�q − q2
�n��r�� , �17�

wR
*�n� =

2�VRn
*2�r�
�

�q − q2
*�n��r�� , �18�

with

VRn
2 �r� = VR

2�r�
e−SRSR

n

n!
, �19�

where SR=�iR /��, �iR being the reorganization energy of
the intramolecular vibrational modes for the charge recombi-
nation processes to the neutral ground state. The r dependen-
cies of the electronic coupling constant for charge recombi-
nation are

VR�r� = VRe−�r−
�/LR, VR
*�r� = VR

*e−�r−
�/LR. �20�

Equations �8� and �14� should fulfill the boundary
1
conditions
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 ���r,q,t�
�r



r=


= 0, lim
q→±�

��r,q,t� = 0, �21a�


 ���r,q,t�
�r



r=


= 0, lim
q→±�

��r,q,t� = 0, �21b�


 ��*�r,q,t�
�r



r=


= 0, lim
q→±�

�*�r,q,t� = 0, �21c�


 ���r,q,t�
�r



r=


= 0, lim
q→±�

��r,q,t� = 0, �21d�

and the initial conditions

��r,q,0� = �1�q� = �4��T�−1/2 exp�− q2/4�T� , �22�

��r,q,0� = �*�r,q,0� = ��r,q,0� = 0. �23�

The total amount of ion pairs surviving at time t is cal-
culated as a sum

Pt�t� = P�t� + P*�t� , �24�

where

P�t� = c� d3r� ��r,q,t�dq ,

P*�t� = c� d3r� �*�r,q,t�dq �25�

are the populations of the ground and excited ion pairs, re-
spectively.

It is also useful to introduce the r distributions of D+A−

and D+*A− pairs initially produced through the ground- and
the excited-state channels m�r� and m*�r�,

m�r� = �
0

�

dt N�t� � dq	
n

wI
�n��r,q���r,q,t� , �26a�

m*�r� = �
0

�

dt N�t� � dq wI
*�r,q���r,q,t� , �26b�

where ��r ,q , t� and N�t� obey Eqs. �6� and �8�.
Equations �6�–�24� provide a formal basis for the theory

of ionization and geminate recombination accounting explic-
itly for hot transitions. This model was investigated numeri-
cally using a simulation algorithm given in the Appendix.
The results of the simulation are presented in the next sec-
tion.

III. REPRODUCING THE KINETICS OF QUENCHING
AND CHARGE RECOMBINATION

Two independent sets of experimental data have to be
reproduced: �1� the time dependence of the excited-state
population N�t� and �2� the time dependence of the ground-
state-ion pair population P�t�.7 Since the parameters for
charge recombination do not affect the ionization dynamics
in Eq. �8�, we will follow Ref. 4 and start with the fitting of
N�t�. Below we present the results for c=0.32 M only,

though analogous results are obtained for c=0.16 M as well.
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The following fixed parameters were used:4 �GI=−2.14 eV,
�GI

*=−0.6 eV, �GR=−0.69 eV, �=0.1 eV, LI=1.24 Å, and
�D=4.34 ns. On the other hand, the parameters VI, VI

*, SI, and
D were adjusted.

A remark concerning the choice of the solvent relaxation
time �L should be added. Like the other solvents, acetonitrile
exhibits non-Markovian polarization relaxation dynamics,
which is usually described in terms of several solvent modes
with different relaxation times. Acetonitrile is characterized
by at least two modes with an ultrafast inertial mode having
a relaxation time �1� 0.2 ps and a slower Debye-type mode
with �2�0.5 ps.27 Only the latter mode was taken into ac-
count because, with the energetic parameters adopted here,
the hot transitions predominantly occur when the relaxation
of the fastest mode is over and before the slowest mode has
started. Of course, the Markovian approach used in this pa-
per can only yield a limited precision of the description.

The strategy for choosing the best-fit parameters was the
following. In the ionization kinetics, several regimes, which
are controlled by different parameters, can be distinguished.
The quenching at early time proceeds at the kinetic regime
and can be well described with a rate constant k0=kI�t=0�.4

At this stage, the initial equilibrium distribution of reactants
in both q and r spaces is assumed not to be perturbed. This
quantity can be calculated using Eq. �7� with ��r ,q ,0� deter-
mined by Eq. �22�. Its value k0=322.6 Å3/ps was found ear-
lier from the best fit of the short-time kinetics in the 0–6.5 ps
interval.4 The VI, VI

*, and SI parameters able to reproduce this
k0 value were then chosen. This allowed the reduction of the
number of independent parameters. At longer times, the
quenching is controlled by the diffusive delivery of the reac-
tants to the ionization zone. In this regime, the role of D is
dominant, and its value can be determined rather precisely
from the analysis of the dynamics of the excited-state popu-
lation N�t� in the 0.2–1.2 ns interval �see Fig. 3 of Ref. 4�.
The excited-state population dynamics measured in an inter-
mediate time interval �1–300 ps� was used for the determi-
nation of the other parameters.

A. Double-channel ionization model

A few sets of parameters, which can be considered as
candidates for the best fit of quenching kinetics, were found.
At least two of them reproduce the experimental data of Ref.
4 quite well.

The first set of parameters is the same as that found in
Ref. 4 within the framework of the DET. These parameters
are

VI = 0.123 eV, VI
* = 0.138 eV, SI = 0, D = 3.05

� 10−5 cm2/s. �27�

Figure 3�a� shows that the excited-state dynamics N�t�, cal-
culated earlier in Ref. 4, can be well reproduced with these
parameters.

This close agreement between our results and those ob-
tained within the original DET is not surprising. Because
ionization through the ground channel occurs in the far
Marcus inverted region, the ion pairs should be predomi-

nantly formed at relatively large inter-ionic distances. This is
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illustrated by the m�r� dependence shown in Fig. 4�a�. Since
the electronic coupling at such distances is very weak, ion-
ization proceeds mostly as a nonadiabatic reaction and does
not violate the thermal distribution over the reaction coordi-
nate q.

B. Multichannel ionization model

A rather good fit of the ionization kinetics N�t� to the
experimental data �see Fig. 3�b�� was achieved with the fol-
lowing parameters:

VI = 0.048 eV, VI
* = 0.057 eV, SI = 2, D = 3.95

� 10−5 cm2/s. �28�

Since SI=2, the forward electron transfer proceeds through
several vibrational channels at q1

�n�. This changes consider-
ably the energetics of ionization and decreases the electronic
coupling constants VI and VI

*. The vibrational sublevels
lower the effective activation barrier of ionization, shifting
the reaction closer to the contact distance r=
. The distance
distribution of the ion pairs produced by ionization is pre-
sented in Fig. 4�b�. In this case, a somewhat larger value of
the diffusion coefficient D was used to reproduce the ob-

FIG. 3. Best fit of the ionization kinetics at c=0.32M and reported in Ref. 7
�dots� using the double-channel model �A� and the multichannel model �B�.
The best-fit parameters are given by Eqs. �27� and �28�, respectively.
served dynamics at long time scale.
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One remark concerning the sensitivity of the numerical
curve N�t� to a particular choice of the fitting parameters
needs to be added. Since the efficiency of the excited-state
ionization channel is considerably lower than that of the
ground-state one, the ionization kinetics is weakly sensitive
to the magnitude of VI

*, and therefore the uncertainty on this
value obtained from the fit is rather large. On the other hand,
a variation of the other fitting parameters within 5% leads to
a noticeable degradation of the fit.

C. Ion-pair accumulation-recombination kinetics

For the fitting of the ion-pair kinetics P�t� to the experi-
mental data, the best-fit parameters in Eq. �27� or alterna-
tively in Eq. �28� were used as input data and only the quan-
tities VR, VR

* , LR, and SR were adjusted.
With the parameters from Eq. �27�, a rather good fit of

P�t� to the experimental data in the 80–500 ps time window
was achieved �Fig. 5�a��. It shows that the equilibrated ion-
pair population never exceeds 11% of the primary quenching
product population Pt�t�. The reason is that most of the ini-
tially produced ion-pair population undergo ultrafast hot re-
combination after their birth at the q1 point. This conclusion
will be confirmed in the next section by the direct estimation

FIG. 4. Distributions of ion pairs generated in the ground state D+A−

�dashed lines� and the excited state D+*A− �dotted lines� as a function of the
separation distance m�r� and m*�r�: �A� double-channel model with param-
eters given by Eq. �27� and �B� multichannel model �Eq. �28��. The solid
lines are the overall ion-pair distributions.
of hot transition probability.
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The free ion yield P��� measured independently by pho-
toconductivity is even smaller and amounts to 6%.7 This
number was used to relate the experimental time profiles of
the transient absorption, given in the same work in arbitrary
units, to the absolute ion yield. A good fit of the double-
channel model �Eq. �27�� at long times was obtained with the
following set of parameters:

VR = 0.165 eV, VR
* = 0.165 eV, SR = 3, LR = 2.2 Å.

�29�

These values are in relatively good agreement with those
found in the literature. In particular, the contact values of the
electronic coupling constant VR and VR

* are comparable with
those found in a few independent studies on exciplexes �con-
tact ion pairs�. Values between 0.11 and 0.13 eV and between
0.15 and 0.4 eV are reported in Refs. 28 and 29, respectively.

The fit of the multichannel model to the ion-pair kinetics
P�t� using the ionization parameters given in Eq. �28� is
presented in Fig. 5�b�. The best fit was obtained with the

FIG. 5. Best fit of the ion-pair accumulation/recombination kinetics mea-
sured with c=0.32M and reported in Ref. 7 �dots� using the double-channel
model �A� and the multichannel model �B�. The solid lines are the numerical
results obtained within the original model �parameters of the fits are given
by Eqs. �29� and �30��, while the dashed lines are the same results but
accounting for D�r� and ��r� dependencies with �=1.6 Å �VR=VR

*

=0.15 eV, for the double-channel model, and VR=VR
* =0.075 eV for the

multichannel model�.
following set of parameters:
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VR = 0.093 eV, VR
* = 0.093 eV, SR = 3, LR = 2.2 Å.

�30�

Since the ion pairs are produced at closer distance than in the
double-channel model, efficient hot recombination can be
achieved with smaller electronic coupling constants VR and
VR

* .
It should be noted that the recombination dynamics at

relatively short times t�80 ps could not be reproduced.
However, a rather good fit was obtained at moderate times
80 ps� t�500 ps. Finally, the simulations at long times t
�500 ps predict a slow decay of the ion-pair population due
to the diffusion-assisted geminate recombination, while the
experimentally observed population remains constant.

The ion-pair population dynamics is determined by the
competition between production and recombination. The dis-
crepancy at short times can be due to either an underestima-
tion of the ion production or an overestimation of the ion
recombination.

The approach used here is only applicable if the elec-
tronic transitions are essentially nonadiabatic. It implies that
the single crossing of the nonadiabatic transition region re-
sults in a small transition probability hence electronic cou-
pling V must be sufficiently small. The DSE regime is a
consequence of multiple crossings of the nonadiabatic re-
gion. A thorough discussion of the physical mechanisms of
the friction influence on the criteria for nonadiabaticity was
given in Refs. 16,17. The applicability domain of the sto-
chastic approach for the parameters obtained in this paper
may be roughly estimated as V�kBT.30 Too large electronic
coupling were obtained with the double-channel model �SI

=0� as shown by Eqs. �27� and �29�. In this case, the adia-
batic corrections can be considerable. However, much
smaller values have been obtained with the multichannel
theory �SI=2� :V=0.048–0.093 eV �Eqs. �28� and �30��. The
effective electronic coupling between vibrational sublevels is
even smaller than these values by the square root of the
Franck-Condon factor as indicated by Eqs. �12� and �19�.
Therefore, the short-time discrepancy cannot be ascribed to a
nonapplicability of the model.

As noted above, acetonitrile exhibits a non-Markovian
polarization relaxation dynamics. The presence of several re-
laxation components can affect the ion-pair population dy-
namics especially at short times.31 This requires further in-
vestigation.

The fit to the experimental data at short times could also
be improved by taking into account a nonuniform distribu-
tion of inter-reactant distances. This is reasonable if D and A
form weak complexes with a coupling energy of the order of
kBT. In this case, the number of excited donors with a
quencher at contact distance is increased, and the electron
transfer rate at early time becomes substantially faster.

The influence of the spatial dispersion on the ion-pair
accumulation-recombination kinetics is considered in the

next section.
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D. Influence of the spatial dispersion of diffusion
coefficient and dielectric permittivity on the ion-pair
dynamics

The encounter diffusion at large separation differs from
that at the closest approach distance where the structure of
the few first solvent shells should be taken into account. This
can be done phenomenologically by assuming that the diffu-
sion coefficient is r dependent and becomes smaller at
shorter distances,32

D�r� = D�1 −
1

2
exp�
 − r


s
�� , �31�

where 
s is the diameter of a solvent molecule, which
amounts to 3.62 Å for acetonitrile, and D is the conventional
Fick diffusion coefficient at infinite separation. The actual
diffusion coefficient at contact distance is predicted to be
about twice as small. The probability for the charge recom-
bination of ion pairs born out of the recombination layer is
reduced because their penetration into this layer is slower. A
similar effect can be obtained in more viscous solutions by
decreasing the Fick diffusion coefficient. In such a diffusion-
controlled recombination, observed a few times
experimentally,1,33 the rate decreases with increasing
viscosity.34

If the spatial dependence of D�r� is taken into account,
the spatial dispersion of the dielectric constant ��r�, which
affects recombination in the opposite direction, should not be
ignored. The spatial dependence of the dielectric constant
results from the nonlocal screening of the Coulomb
potential.35,36 The simplest model accounting for the absence
of screening at short distances is35

��r� =
�

1 + ��/�0 − 1�� exp�− r/��
, �32�

where �0=2 is the optical dielectric constant, � is its static
value in the continuum, � is a fitting parameter, and �
=2��2 /
2��cosh�
 /��−1� is the correction for the excluded
volume of finite-size particles. If this effect is included in
Uc�r� appearing in Eq. �15�, the Coulomb well becomes
deeper,

Uc�r� =
e2

��r�r
. �33�

This potential is characterized by a sharp feature near con-
tact, which looks like an additional narrow and rather deep
well. It originates from the same Coulomb attraction but is
not screened by intercalated solvent molecules. The deepen-
ing of the Coulomb well accelerates the drift of ions toward
the region of maximum recombination rate, and thus this
latter process is enhanced. The depth of this well can be
adjusted by the independent parameter �.

Accounting for the spatial dispersion of both ��r� and
D�r� improves the fitting of the kinetics P�t� in the interval
30 ps� t�80 ps �dashed lines in Fig. 5�, but at long time
scale the ion state population is still underestimated. For a

further improvement of the theory, the chemical anisotropy
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of the reaction, which makes all the rates angular dependent
and affected by the rotational diffusion,37 should be taken
into account.

E. Internal conversion of the excited ion pairs
and free ion yield

In the simple scheme shown in Fig. 1, the potential of
the excited ion pair is not displaced horizontally relative to
that of the ground state. Since these two potentials do not
cross, the electron-vibration interactions are actually absent.
Thus, the straightforward transformation of electronic energy
of the ion pairs into vibrational energy, followed by vibra-
tional relaxation, is totally ignored. In reality, the two poten-
tials are displaced, and internal conversion can efficiently
compete with the above-considered mechanism of double
electron transfer, namely, charge recombination of the ex-
cited ion pair to the neutral products, followed by hot ion-
ization to the ion pair in the ground state �Fig. 2�. If internal
conversion dominates, then all ion pairs are deactivated with
100% efficiency and consequently �*=1.

This alternative has been considered using a time con-
stant of internal conversion of �ic=3 ps.7 However, this did
not bring any significant change. Although this mechanism
produces more ion pairs in the ground state, all of them are
born in or near the charge recombination layer and thus re-
combine much faster than they separate. Therefore their con-
tribution to the free ion yield is negligible. It can thus be
concluded that the free ion yield is only weakly sensitive to
a particular value of �*.

IV. HOT RECOMBINATION

The results of the fit indicate a significant role of hot
transitions in the recombination dynamics. The effect of hot
recombination on the formation of ions depends strongly on
the quenching channel. Let us start with the electron transfer
to the excited ion pair �Fig. 1�, which proceeds in the Marcus
normal region �at q1

*� and is followed by downward diffusion
to the bottom of the D+*A− well. Since the most effective
sinks at the q2

*�n� points lie in the Marcus inverted region
�Fig. 1�, the bottom is reached before the crossing points and
the subsequent recombination is mainly thermal, that is, it
goes “up and down” from this well to the neutral product
potentials.

On the contrary, the charge recombination following the
forward electron transfer to the ion pair in the ground state
D+A− �see Fig. 1� is in the Marcus normal region and in-
cludes “down-down” hot transition �Fig. 1�. Indeed, starting
from a crossing point q1

�n�, the system moves down to the
intersection points q2

�n� and further down to the bottom of the
well. Therefore, the ions pair undergoes first a charge recom-
bination to the neutral product at the points q2

�n� and thermal-
ize afterward. In other words, hot recombination at q2

�n� pre-
cedes thermalization, taking away a �1−�� fraction of the
ion-pair population and leaving only an � fraction that will
recombine thermally �“up-down”� afterwards.

On the other hand, the neutral product generated by
thermal charge recombination of the excited ion pair also

�n�
experiences a hot ionization at q2 �n�0� before reaching the
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bottom of the DA state. This is the secondary ionization pro-
ceeding with efficiency �* to the ion-pair state D+A− �Fig. 2�.

The distributions of ionization products were calculated
from Eqs. �26� with the parameters obtained from the best fit
of the ionization kinetics Eqs. �27� and �28�. As mentioned
above, excited ion pairs are produced near contact distance,
while those in the ground state are produced in a larger
amount and larger distance �see Fig. 4�. If we neglect the
encounter diffusion of the ions during the motion from q1 to
q2 and from q2

* to q2, the fractions of ions reaching equilib-
rium by the two parallel pathways can then be estimated as
��r�m�r� and �*�r�m*�r�. The r distributions of these equili-
brated ion pairs are shown by the dash-dotted lines in Fig. 4.
These distributions are significantly altered and reduced
compared to m�r� and m*�r� because of hot recombination.
These changes arise from ��r� and �*�r� whose values and
space dispersions are calculated below.

The value of � for a system subjected to a single cross-
ing during relaxation has been determined in Refs. 23 and
38. However, the present situation is more complex. Indeed,
immediately after the transition to the D+A− well near q1

�n�,
the system almost instantaneously reaches the lowest vibra-
tional level �n=0� because of the ultrafast intramolecular vi-
brational redistribution and crosses a number of vibrational
sublevels of DA while moving toward the bottom of the
D+A− well �Fig. 1�. If these vibrations participate in the
charge recombination, i.e., are being Franck-Condon active,
the survival probability of the ion pair reduces upon each
crossing. Similarly, hot transitions reduce by a factor 1−�*

the survival probability of neutral product, which moves
down from q2

*�n� toward the bottom of the DA well and
crosses several vibrational sublevels of the D+A− state.

Following Ref. 26, we consider a sequence of hot elec-
tronic transitions to the sublevels UDA

�n� . The probability of a
transition generating n vibrational quanta W2n can be calcu-
lated using the method developed in Ref. 23 In the present
notation it is given by

W2n =
2�VRn

2 �r�
A1n �1 + 2�VRn

2 �r�� 1

A1n
+

1

A2n��−1

, �34�

where

A1n =
2�

�L


�UD+A−
�n�

�q



q=q2
�n�

=
q2

�n� − 2�

�L
,

�35�

A2n =
2�

�L

�UDA

�n�

�q



q=q2
�n�

=
q2

�n�

�L

are the slopes of the potential intersecting at q2
�n�. Only those

points, which are to the right of q1
�0� and whose number is

nmax, need to be considered.
If ��	kBT, the mutual influence of the nearest crossing
points is negligible. Under this condition, the survival
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probability of the ion-pair population is the product of the
partial survival probabilities considered as independent
events,

��r� = �
n=0

nmax

�1 − W2n� . �36�

The r dependence of � originating from the r dependence of
both VR�r� and ��r� is depicted in Fig. 6.

A similar reasoning can be used to estimate the ground-
state ion population generated via the excited-state channel.
The value of �* is

�*�r� = 1 − �
n=0

nmax

�1 − W1n� , �37�

where

W1n =
2�VRn

2 �r�
A2n

*  �1 + 2�VRn
2 �r�� 1

A2n
* 

+
1

A1n
* ��−1

, �38�

A1n
* =

q*�n� − 2�

�L
, A2n

* =
q*�n�

�L
, �39�

where q*�n�=�−�GR+n��, and nmax is determined from the
condition q*�n�=2�. The difference between �*�r� and ��r�
shown in Fig. 6 is most pronounced at large separation where
�*→0, because hot ionization is switched off, and �→1,
because hot recombination is no longer efficient. Because of
the hot transfer processes, the population of thermalized ion
pairs is significantly reduced compared to those of their pri-
mary generated precursors.

The calculated ��r� and �*�r� dependencies, along with
the initial r distribution of ion pairs m�r� and m*�r� �Fig. 4�,
allow the efficiency of hot transitions in both channels to be
estimated. Introducing the efficiencies of ion-pair production

FIG. 6. Fractions of ion pairs having escaped hot recombination to the
neutral products � �solid lines� and thermalized fraction of excited ion pairs
�* �dashed lines� as a function of interionic distance r calculated using the
double-channel model �Eq. �29�� and the multi-channel model �Eq. �30��.
through the ground and excited channels,
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P0 = c� m�r�d3r , �40a�

P0
* = c� m*�r�d3r , �40b�

the amounts of thermalized pairs Pth and Pth
* participating in

the subsequent thermal recombination are then calculated as

Pth = c� ��r�m�r�d3r , �41a�

Pth
* = c� �*�r�m*�r�d3r . �41b�

These parameters, calculated for the double-channel model,
are

P0 = 0.89, P0
* = 0.10, Pth = 0.08, Pth

* = 0.04, �42�

and those for the multichannel model are

P0 = 0.96, P0
* = 0.03, Pth = 0.08, Pth

* = 0.02. �43�

Because of the hot transfer, the total amount of thermal-
ized pairs Pth+ Pth

* is equal to only 10%–12% of that of the
initially generated pairs, P0+ P0

*. Therefore, for the system
considered here, about 90% of the initially created radical
ion pairs undergo hot transitions, 4% of them dissociate into
free ions, and only 6% recombine through thermal channels.

V. CONCLUSIONS

This is, to our knowledge, the first relatively successful
fit of a backward electron transfer kinetics which takes into
account the hot recombination of photogenerated ion pairs.
The information obtained earlier from the best fit of the for-
ward electron transfer with the same system has been used.4

This study indicates the presence of two parallel channels of
ionization, to the ground and excited states of ion pairs,
whose products are located rather far and close to the con-
tact, respectively. Since the backward transfer occurs essen-
tially near contact, the closely spaced excited ion pairs dis-
appear almost completely upon geminate recombination
while those in the ground state have a high probability to
escape it and thus provide the main contribution into the free
ion yield.

The hot recombination of ion pairs is a decisive factor. It
is shown that, in the present system, the vast majority of ion
pairs have recombined through the hot channel before they
are equilibrated and start to recombine with the usual thermal
rates. Almost 90% of the ion pairs recombine before equilib-
rium is reached and the subsequent thermal recombination is
accelerated by their encounter diffusion. As a result, no more
than 6% of their initial population are finally separated �at
c=0.32 M�. Such a surprisingly fast back electron transfer
proceeding through the hot channel was also detected in
Ru�II�–Co�III� mixed-valence complexes in butyronitrile.39

In this case as well, less than 50% of the ion pairs generated
by the excitation of the metal-to-metal charge-transfer band
avoid this recombination and reach equilibrium. These ex-

amples show that the study of any system should start from
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the inspection of the energy scheme as presented in Fig. 1.
This has to be done to find out whether the quenching prod-
uct has to pass a crossing point �like q2� on its way to the
bottom of the well. If this is the case, one should care not
only for thermal but first of all for the hot transfer as a
dominant factor in the charge recombination.

Since hot transitions cannot be discussed in terms of rate
constant, their appropriate description has called for an ex-
tension of existing theories of electron transfer quenching in
solutions to explicitly account for reaction coordinate dy-
namics. In the theory presented here, both the chemical dy-
namics and the mutual spatial diffusion of the reactants have
been taken into account. It should be noted that the spatial
motion of the reactants was not considered in previous in-
vestigations of hot transitions.5,6,20–23 In particular, in Ref. 21
the average lifetime of the immobile ion pairs subjected to
hot and thermal recombination was calculated. On the con-
trary, we have considered here the competition between the
recombination of thermalized ion pairs and their diffusional
separation.

A second new element of the present investigation is
connected to the fact that both the ionization and recombina-
tion of the Pe-TCNE pairs are considerably affected by the
introduction of a high-frequency quantum mode. With such a
mode, many term crossings with different values of the vi-
brational quantum number are available for hot transition.
Therefore, the hot recombination efficiency is greatly en-
hanced. As a result, only the pairs created with a relatively
large inter-ionic distance have a finite probability to avoid
hot recombination. This allows the unusually small free ion
yield of this donor-acceptor pair to be explained.
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APPENDIX: SIMULATION METHOD

In the numerical simulations, the Brownian simulation
method in the form proposed before in Refs. 38 and 40 was
used. Here we outline some features of the program imple-
mentation specific to the model considered. The software is
available on the web �http://physics.volsu.ru/feskov�.

The first step in the simulations is the time propagation
of an ensemble of N �N=106–107� Brownian quasiparticles
representing the initial distribution of the excited donor-
acceptor pairs in extended coordinate space according to the
diffusion equations ��8� and �14�� and the reflective boundary
conditions at contact radius �21�. The important points of the
algorithm are as follows.

�1� The initial distribution of quasiparticles obeys Eq. �22�.
�2� The unreactive Brownian trajectory of quasiparticle is a

Markovian random process in �r ,q� space.
�3� The electronic transitions in donor-acceptor pairs are

modeled by hops of quasiparticles between the poten-
�n� *�n�
tial surfaces �1� at the crossing points qi , qi �i=1,2�.
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�4� The internal conversion of the excited ion pairs is ac-
counted for as an irreversible decay D*+A−→D+A−

with the characteristic time constant �ic.

An unreactive trajectory of the kth quasiparticle is cal-
culated as a set of coordinates �rk

�i� ,qk
�i�� at consecutive time

intervals �ti. Using well-known Green’s functions for the

diffusion operators D̂ and L̂ as the probability distributions
of random walks at r and q subspaces, one obtains the fol-
lowing simulation rules:

qk
�i� = qk

�i−1�e−�ti/�L + Xi
�2��rk

�i−1��kBT�1 − e−2�ti/�L� ,

rk
�i� = rk

�i−1� + Yi
�2D�rk

�i−1���ti +
2

rk
�i−1�D�rk

�i−1���ti,

for trajectory on the neutral state surface, and

qk
�i� = 2��rk

�i−1�� + �qk
�i−1� − 2��rk

�i−1���e−�ti/�L

+ Xi
�2��rk

�i−1��kBT�1 − e−2�ti/�L� ,

rk
�i� = rk

�i−1� + Yi
�2D�rk

�i−1���ti

+ �2 −
rc

rk
�i−1�� 1

rk
�i−1�D�rk

�i−1���ti,

for that on the ion state surface. Here Xi and Yi are the
Gaussian random numbers with zero mean value and unit
dispersion. The above equations are exact for unreactive dif-
fusion along q and are approximate for the spatial diffusion
along r, valid for small-time steps.

Each particle is assumed to occupy the volume �� in the
configuration space �r ,q�. This quantity appears naturally
when one relates the initial normalized probability distribu-
tion function �Eq. �22�� and the finite number N of Brownian
quasiparticles. Since the diffusion along r results in an alter-
ation of ��, an additional weight factor �k

�i� is introduced and
calculated at each time step as follows:

�k
�i� = �k

�i−1�� rk
�i−1�

rk
�i� �2

, ��k
�0� = 1� . �A1�

This guarantees the conservation of the distribution function
normalization in the absence of reactions

	
k

4��rk
�i��2��k

�i� = ��	
k

4��r�i��2�k
�i� = const. �A2�

The surface-hopping algorithm38,41 is applied to simulate
electronic transitions between the diabatic surfaces at the
crossing points qi�r�. The probability of survival at the same
surface is

pk
�i� = exp�−

2�Vel
2 �rk

�i−1���ti

��Uk
�i� � , �A3�

which is the well-known result of perturbation theory. Here
�Uk

�i�=U�rk
�i� ,qk

�i��−U�rk
�i−1� ,qk

�i−1�� and Vel�rk
�i−1�� is the corre-

sponding electronic coupling element.
The reaction flux j�ti� between two free-energy surfaces

can be easily calculated through the total configuration vol-

ume transferred from one surface to another during the time
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interval �ti. Since each hop of a quasiparticle generates the
elementary flux �jk

�i�=4��rk
�i��2��k

�i� /�ti, the total flux is

j�ti� = 	
k

�jk
�i� = ��/�ti	

k

4��rk
�i��2�k

�i�, �A4�

where the summation is taken over particles having trans-
ferred between the given surfaces.

The time-dependent survival probabilities of the excited
donors N�t� and radical-ion pairs P�t� are then directly deter-
mined by the reaction fluxes jI�t� and jR�t� for ionization and
recombination, respectively. Since the ionization proceeds
through two parallel channels the flux jI�t� is a sum

jI�t� + jI
*�t� = kI�t� =� d3r� dq wI�r,q���r,q,t� . �A5�

Similarly the recombination fluxes through the ground and
excited channels are

jR�t� =� d3r� dq wR�r,q���r,q,t� , �A6a�

jR
*�t� =� d3r� dq wR

*�r,q��*�r,q,t� . �A6b�

Using these quantities, the survival probability of the excited
donor state is calculated as

N�t� = exp�− c�
0

t

jI�t��dt� − t/�D� �A7�

and the kinetics of the ground- and excited-state ion pairs,

P�t� = c�
0

t

�jI�t��N�t�� − jR�t���dt�, �A8�

P*�t� = c�
0

t

�jI
*�t��N�t�� − jR

*�t���dt�. �A9�

The numerical integration in Eqs. �A7� and �A8� is per-
formed by the standard finite-difference methods.
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The efficiencies of contact geminate recombination to either the ground or excited triplet state of neutral
products are calculated for contact and remote starts of radical ion pairs initially created in the singlet state.
Considering the spin-conversion in this pair as a stochastic process with given rate, the diffusional dependence
of recombination and charge separation yields and corresponding efficiencies are specified. This is compared
with the experimental data obtained for photo-excited perylene quenched by aromatic amines in dimethyl
sulfoxide–glycerol mixtures, which allow for a wide variation of solvent viscosity with composition. The
successful fitting of the theory to non-trivial viscosity dependences confirms that the spin-forbidden
recombination is composed of two sequential stages. Considering that the radical-ion pair is created in
the singlet state, the spin conversion should precede its recombination to the excited triplet product.

1 Introduction

Radical Ion Pairs (RIPs) are created in either the singlet or tri-
plet state depending on the precursors which are excited singlet
or triplet donor (1D or 3D) and charge acceptor A in the bulk.
The ion pairs [D+� � �A�] can be either separated by diffusion
producing free ions or recombine to give either the ground or
excited triplet state of the neutral product. The ruthenium tris-
bipyridine complex quenched by methylviologen (MV2+) is so
far is the most thoroughly studied reaction of this sort:1–5

3Ru2þ
� ��þMV2þ

���!WL 3 R
�
u3þ . . .M

�
Vþ

� �

! 2R
�
u3þ þ 2M

�
Vþ

ks #" 3ks
1 R
�
u3þ . . .M

�
Vþ

� �

! 2R
�
u3þ þ 2 M

�
Vþ

+WS

1 R
�
u2þ . . .MV2þ� �

ðIÞ

This reaction scheme can be generalized and formalized as
follows:

Dþ þ A�

% �jj-
3D�þA ���!WL 3½Dþ . . .A��  ������!ks

3ks

1½Dþ . . .A��
# t +WS

D ½D . . .A� ð1:1Þ
There is a single channel of charge recombination: only to the
ground state with the rate WS . This competes with the diffu-
sional separation of RIP from both the singlet and triplet states
whichhasayield �jj ¼ (1+Z/D~)�1expressed throughtherecom-
bination efficiency Z and encounter diffusion coefficient D~ ¼
DD++DA� .

5–7

The sum of the yields of the neutral and charged reaction
products is evidently 1,

�jjs þ �jj ¼ Z

~DDþ Z
þ

~DD

~DDþ Z
¼ 1; ð1:2Þ

and Z/D~ is a single parameter of the problem. It was studied
as a function of the free energy of recombination, encounter
diffusion and spin conversion responsible for the magnetic field
effects.4,6–8

Much less study has been done for RIPs having a singlet pre-
cursor. Although this situation is more often studied than the
case of RIPs with triplet precursors, it is rarely investigated as
a function of viscosity. There are only a few studies where the
forward transfer was investigated in solvents of different visc-
osities9–11 and similarly only a few studies where backward
transfer was also investigated.12,13 The system studied in this
work is perylene (Per) quenched by aromatic amines (D):

Per� þD) ½P� er� . . .Dþ� ! P
�
er
� þ _DD

þ

+
½Per . . .D� ðIIÞ

This reaction can be represented by the following comprehen-
sive scheme:

A� þ Dþ

% �jj -
1A�þD ���!WL 1 A� . . .Dþ½ �  ��������!3ks

ks

3 A� . . .Dþ½ �:
# t +WS +WT

A A . . .D½ � 3A� . . .D
� �

ð1:3Þ

Now we have two parallel channels of geminate recombina-
tion: to the singlet (ground) and triplet (excited) states and
should discriminate between their efficiencies, ZS and ZT which
contribute to the total

Z ¼ ZS þ ZT: ð1.4Þ

Correspondingly, there are three terms in the quantum yield
balance instead of only two as in eqn. (1.2):

�jjt þ �jjs þ �jj ¼ ZT

~DDþ Z
þ ZS

~DDþ Z
þ

~DD

~DDþ Z
¼ 1: ð1:5Þ
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The presence of the triplet channel of geminate recombination
was first recognized by Weller et al. and the existence of the
excited triplet products was experimentally proved.14,15 The
RIP recombination through a triplet channel assumed in ref.
16 allowed an explanation of the non-trivial charge accumula-
tion and geminate recombination kinetics studied in ref. 17.
Later on not only the value but also the viscosity dependence
of �jjt became experimentally available.13 Having at hand two
independent components of eqn. (1.5), �jjt and �jj, one can easily
obtain two corresponding recombination parameters,

ZT ¼ ~DD
jt

�jj
and Z ¼ ~DD

1

�jj
� 1

� �

; ð1:6Þ

as well as the third , ZS ¼ Z�ZT . The main goal of the pre-
sent article is to specify the diffusional dependence of all three
of these.
In spin-less theory there is a single recombination parameter

Z(D) which was investigated in refs. 5 and 6. There it was
shown that contact geminate reactions can be subdivided into
kinetic and diffusion controlled reactions provided the initial
separation of radical ions, r, essentially exceeds the contact dis-
tance s where recombination takes place. At small D~ the gemi-
nate recombination is under diffusion control and its efficiency
increases linearly with D~ but then saturates and approaches the
kinetic limit qz ¼ lim

~DD!1
Z which is viscosity independent. In

highly polar solvents

q ¼ s=r; and z ¼ k�ets
2=3 ¼ kc=4ps; ð1.7Þ

where k�et is the recombination rate of the so-called Exponen-
tial Model (EM) easily related to the kinetic rate constant of
contact bimolecular recombination, kc .

5 In the EM, Z� z ¼
const. everywhere because the model assumes that ions not
only recombine but that this also starts from contact (that is
r ¼ s). For electron transfer this is rarely the case because ions
can be created at larger distances especially when ionization is
under diffusion control.5,18,19

There is also an extension of the EM for a two channel reac-
tion (II).20,21 The yields of triplets and separated ions are
represented as follows:

jt ¼
kisc

ksep þ k�et þ kisc
; j ¼ ksep

ksep þ k�et þ kisc
; ð1:8Þ

where ksep is the EM rate of ion separation. The only difference
from a single-channel EM is the substitution of k�et by the sum
of the spin-allowed and spin-forbidden transfer rates
k�et+ kisc , to the ground and to the triplet state, respectively.
Like k�et the inter-system crossing rate kisc does not depend on
viscosity. Moreover, EM does not recognize two different steps
of the forbidden transition: spin-conversion to the triplet RIP
and subsequent allowed electron transfer into the triplet pro-
duct.20–24 However, it has been shown already that one should
discriminate between spin conversion and subsequent recombi-
nation even in the case of a single channel but spin-forbidden
reaction (I).25 The simplest (stochastic) model of spin-conver-
sion implies that it proceeds with the rate ks from the triplet
to singlet and with rate 3ks from the singlet to triplet. Within
this model implemented into unified theory not only the
magnetic field effect was estimated25 and compared with a real
one,4 but also exciplex formation and dissociation was stu-
died26–28 as well as chemiluminescence.29 In most instances,
the backward electron transfer was assumed to be contact:

WS ¼
kSc

4ps2
dðr� sÞ; WT ¼

kTc
4ps2

dðr� sÞ: ð1:9Þ

The incoherent spin-conversion and contact recombination
were also assumed when the two-channel reaction (II) was con-
sidered by means of Integral Encounter Theory (IET).30,31

However, the goal of these studies was to determine the free
energy dependence of the forward and backward electron
transfer rather than the diffusional dependence of the quantum
yields and recombination efficiencies which are of the most
interest here. Using the conventional Green function formal-
ism the efficiencies of singlet and triplet RIP recombination
will be calculated and compared relative to each other. The
qualitative difference between spin-allowed and spin-forbidden
recombination will be established as well as the crucial depen-
dence of both on the rate of spin conversion.
The outline of this paper is as follows. In the next section

we will present the general expression for singlet and triplet
recombination efficiencies, ZS and ZT . In section 3 they will
be specified assuming contact creation of the radical-ion pair
in addition to their contact recombination. In section 4 the
results will be reconsidered allowing the distant production
of RIP in the course of diffusion controlled ionization. In sec-
tion 5 we present the fitting of real data with our model. The
results will be summarized in Conclusions.

2 Recombination efficiencies of singlet and triplet

channels

Rearranging eqn. (1.6) we can obtain the uniform definitions
for the singlet and triplet efficiencies:

ZT ¼ ~DD
�jjt

�jj
and ZS ¼ ~DD

�jjs

�jj
; ð2:1Þ

where the relationships (1.4) and (1.5) hold as before and all
quantum yields are averaged over the normalized initial distri-
bution of RIPs produced by bimolecular ionization:5–7

�jj ¼
Z

jðrÞf 0ðrÞd3r; �jjs ¼
Z

jsðrÞf 0ðrÞd3r;

�jjt ¼
Z

jtðrÞf 0ðrÞd3r: ð2:2Þ

The general solution of the problem can be deduced from
results obtained in refs. 5 and 25. There we considered the
exciplex formation from RIPs experiencing recombination to
triplet and ground states. In that case, the singlet channel of
recombination was composed of two parallel sub-channels:
to the singlet exciplex (with the rate constant K) and the
ground state (with another constant kSc ). If the former is
switched off we reduce the problem to the present one. Thus
setting K ¼ 0 in the total rate constant of the singlet RIP
recombination Kz ¼ K+ kSc ! kSc we obtain instead of eqns.
(9.56) and (9.57) of ref. 5 the following quantum yield for
RIP recombination to the ground state:

jsðrÞ ¼ kSc ~ppSSðs; r; 0Þ

¼ kSc
kSc þ kD

�

s

r
� ~ppSTðs; r; 0Þ kTc þ kD

� �
	

; ð2:3Þ

where kD ¼ 4psD~ is the diffusional rate constant for the con-
tact transfer and

~ppSTðs; r; 0Þ ¼ 3
Jðs; r; 0Þ 1þ kSc =kD

� �

�Jðs; s; 0Þ kSc =4pr~DD
� �

1þ kSc =kD þ 3 kTc � kSc
� �

Jðs; s; 0Þ :

ð2:4Þ
Here the spin sensitive quantity is defined as:

Jðs; r; 0Þ � ksJðr; 0Þ ¼
1þ a� e�aðr�sÞ s=

16pr~DDð1þ aþ kTc kD= Þ
; ð2:5Þ

where a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4kss2=~DD

q

is a measure of the spin-conversion dur-
ing the encounter time td ¼ s2/D~. Substituting eqn. (2.5) into
(2.4) we obtain the final and most general expression for the
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Green function of the singlet to triplet transition in RIP:

~ppSTðs; r; 0Þ ¼
3s

4r

akD þ 1� e�aðr�sÞ s=
� �

ðkD þ kSc Þ
½kDð1þ aÞ þ kTc �ðkD þ kSc Þ þ 3

4
akDðkTc � kSc Þ

:

ð2:6Þ
As follows from eqn. (9.60) of ref. 5, the quantum yield

of the triplet recombination products of RIPs started from
distance r is

jtðrÞ ¼ kTc p~STðs; r; 0Þ: ð2.7Þ

Correspondingly, the charge separation quantum yield is:

jðrÞ ¼ 1� kSc 4pr~DDþ ðkTc � kSc Þ~ppSTðs; r; 0Þ
�

1þ kSc kD=
: ð2:8Þ

When ks ¼ a ¼ 0, there is no triplet production: jt� 0. As a
result the two other yields coincide with their conventional EM
analogs:

jt ¼ 0; jsðrÞ ¼
s

r

kSc
kSc þ kD

¼ 1� jðrÞ: ð2:9Þ

In the alternative limit ks ¼ a ¼ 1 the complete equilibra-
tion of the spin states in RIP is immediately achieved, as fol-
lows from eqns. (2.6) and (2.7), (2.3):

jt ¼
3s

4r

kTc
kD þ 1

4
kSc þ 3

4
kTc
;

js ¼
s

r

kSc
kSc þ kD

1� 3

4

kTc þ kD

kD þ 1

4
kSc þ 3

4
kTc

( )

: ð2:10Þ

These values of quantum yields are quite different if one of the
recombination channels is switched off:

jt ¼ 0; js ¼
s

r

1

4
kSc

kD þ 1

4
kSc

at kTc ¼ 0 ð2:11aÞ

jt ¼
s

r

3

4
kTc

kD þ 3

4
kTc
; js ¼ 0 at kSc ¼ 0: ð2:11bÞ

The results are self-evident.

3 Contact start

This is the simplest case related mainly to atom transfer
which is contact in both directions. When not only backward
transfer is contact but also the forward transfer then RIPs
are created only at r ¼ s. Thus, all the above formulae
are greatly simplified. In particular eqn. (2.6) becomes the
following:

~ppSTðs; s; 0Þ ¼
3a

4½kDð1þ aÞ þ kTc �ð1þ kSc =kDÞ þ 3a½kTc � kSc �
:

ð3:1Þ
Using this result in eqns. (2.3), (2.7) and (2.8) we obtain all
quantum yields and from them the recombination efficiencies
(2.1):

ZT

~DD
¼ 3a=4

1þ yTð1þ aÞ ;
ZS

~DD
¼ 1

yS
1� 3a=4

1þ yTð1þ aÞ y
T

� 

; ð3:2Þ

where yS ¼ kD/k
S
c and yT ¼ kD/k

T
c .

If ks ¼ 0 then we return back to a particular case (2.9) with
zero triplet production and Z/D~ ¼ ZS/D~ ¼ kSc/kD . If the
recombination to triplet product is not possible due to some
other reason (e.g. unfavorable free energy balance making
kTc ¼ 0) then, again, we have no triplet production but the
recombination to the ground state is affected by spin-

conversion:

ZT ¼ 0;
ZS

~DD
¼ kSc

kD

1þ a=4

1þ a
¼ Z

~DD
at kTc ¼ 0: ð3:3Þ

This case is identical to the previous one only at zero spin con-
version (ks ¼ 0). Otherwise, the transition from the singlet to
triplet RIP makes the latter unable to recombine, thus favoring
the charge separation. Therefore Z decreases with ks to 1/4 of
the initial value and correspondingly increases the quantum
yield of separated radical ions. The similar difference between
slow and fast spin mixing was obtained in ref. 32 using a coher-
ent Dg mechanism of spin conversion.
Conversely, when the decay of the RIPs to the ground state

is switched off, then the spin-conversion facilitates their recom-
bination by opening the triplet channel:

ZT

~DD
¼ a

3

4
kTc

kDð1þ aÞ þ kTc
¼ Z

~DD
; ZS ¼ 0 at kSc ¼ 0: ð3:4Þ

At ks ¼ 1 we have from the general formulae (3.3) and (3.4)
correspondingly:

ðaÞ Zmin

~DD
¼ 1

4
kSc kD= ; or ðbÞ Zmax

~DD
¼ 3

4
kTc

�

kD: ð3:5Þ

Here both the recombination rates appear with their equili-
brium weights and in full accordance with eqn. (2.11). In Fig. 1
the recombination efficiencies for single channel recombina-
tion, be it a singlet (ZS) or triplet one (ZT), are shown as func-
tions of ks at a fixed diffusion constant kD .
The situation is qualitatively different when the spin conver-

sion efficiency a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4kss2=~DD

q

changes due to the diffusion
(viscosity) variation instead of ks variation. This is not a hypothetical
situation like the previous one, but rather a feasible possibility
that has been realized experimentally a number of times.3,4,12,13

The principal difference lies in the fact that the diffusion
changes not only a but kD ¼ 4psD~ as well. This does not affect

ZS ¼ zs
1þ a 4=

1þ a
; zs ¼ kSc 4= ps; ð3:6Þ

which is a universal function of a, but makes the shape of

ZTð1
� ffiffiffiffi

~DD
p
Þ different from that of ZT

ffiffiffiffiffi

ks
p� �

(Fig. 2). As a

function of D~, ZT passes through a maximum being zero at

Fig. 1 The variation of the efficiencies of single channel recombina-
tion (normalized to their maxima) with spin-conversion rate given by

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4kss2=~DD

q

at s ¼ 7 Å and fixed D~ ¼ 20 Å2 ns�1. The contact

recombination constant kc ¼ 800 Å3 ns�1 is taken to be the same for
both reaction channels.
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D~! 0 as well as at D~!1:

ZT ¼
3

4
zt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kTc kkD
p

kTc þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kTc kkD
p

þ kD
; zt ¼ kTc 4ps= ; ð3:7Þ

where k ¼ a2kD/k
T
c ¼ 16ps3ks/k

T
c . This is exactly the same

formula as (8.38) in ref. 5 that was obtained for the recombina-
tion to the ground state of triplet born RIP,5,25 except that kTc
is substituted for kSc and the triplet statistical weight (3/4) is
substituted for the singlet one (1/4). An exhaustive explana-
tion of the non-trivial extremal behavior of Z with diffusion
was given in Section VII F of the same review.5 It originates
from the extremal behavior of the survival time te of RIPs
which limits the spin conversion but is not identical to the
encounter time. For the contact born RIPs it turns to zero
not only in the fast but also in the slow diffusion limit.5,33 That
is why ZT ! 3

4
a~DD! 0 as D~! 0 while the quantum yield of

triplets,

jt ¼
ZT

ZT þ ~DD
! 3a

3aþ 4
! 1 ð3:8Þ

tends towards 1 as a!1 (Fig. 3).

Much more complex is the two-channel reaction that is the
situation when both recombination rates are non-zero. It is
instructive to consider it when recombination through both
reaction channels proceeds with the same transfer rate:
kSc ¼ kTc ¼ kc . In this case, which is halfway between the two
previous cases, the spin conversion does not affect the total
recombination rate but only the relationship between the
singlet and triplet channels. Their recombination efficiencies
obtained from eqn. (3.2) are different:

ZT

~DD
¼ 3a=4

1þ yð1þ aÞ ¼
1

y
� ZS

~DD
; ð3:9Þ

where y ¼ kD/kc . This asymmetry is caused by the initial con-
ditions promoting singlet RIPs. It has far reaching conseq-
uences for the viscosity dependence of both ZS(D~) and ZT(D~),
but not

Z ¼ ZSð0Þ ¼ kc=4ps ¼ z: ð3.10Þ
Since not only ZS(0) ¼ z but ZS(1) ¼ z as well, the curve
ZS(D~) has a minimum which appears exactly at the same argu-
ment D~e ¼ z, where the maximum of ZT(D~) is located (Fig. 4).
The height of the latter is higher the larger is ks :

Zmax
T ¼ 3

2
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kss2=z
p

1þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kss2=z
p � 3

4
Z: ð3:11Þ

This quantity becomes equal to the minimal value of ZS when
the rate of spin-conversion equals the rate of recombination,
ks ¼ z/s2, that is

ZT ¼ ZS ¼ Z=2; when ks ¼ kc=4ps
3 ¼ k�et=3: ð3.12Þ

It is also instructive to compare the diffusional dependence
of the corresponding quantum yields shown in Fig. 5. This
monotonously increases with diffusion, j ¼ D~/(D~ +Z), and
has exactly the same shape as in the exponential model because
according to eqn. (3.10) Z ¼ z ¼ const. The yield of recombi-
nation to the singlet products, js ¼ ZS/(D~ +Z), has quite the
opposite dependence, because ZS is approximately constant as
far as it does not deviate essentially from Z. However, the yield
of triplet products is non-monotonous. At high diffusion jt

decreases as js and for the same reason: the fast separation
of radicals prevent them from recombining. However, at slow
diffusion ZT! (3a/4)D~ and

jt ¼
ZT

ZT þ ZS þ ~DD
! 3a~DD

3a~DDþ 4Z þ 4~DD
! 0; ð3:13Þ

Fig. 3 Quantum yields of single-channel recombination through
singlet (js) or triplet (jt) RIPs. Other parameters are as for Fig. 1.

Fig. 4 Diffusional dependence of singlet and triplet recombination
efficiencies at equal rates of parallel recombination channels (kSc ¼
kTc ¼ kc ¼ 800 Å3 ns�1, ks ¼ 0.01 ns�1).

Fig. 2 Diffusional (viscosity) dependence of recombination efficien-
cies of single channel reactions which proceed through singlet (ZS)
or triplet (ZT) transfer channels at fixed ks ¼ 0.01 ns�1. Other para-
meters are as for Fig. 1.
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resembles the j behavior. The extremal diffusional dependence
of this yield was discovered by Schultens who solved the same
problem (of ‘‘ spin-independent recombination’’, kSc ¼ kTc )
assuming that coherent spin-conversion is separable from the
inter-particle dynamics.34 Their Fig. 5 is qualitatively similar
to our Fig. 5 although the latter relates to incoherent spin
conversion.

4 Non-contact start

When the ionization is due to remote electron transfer the radi-
cal ions in a pair can be created far from each other provided
the reaction is under diffusion control. This is accounted for by
setting the initial separation r > s in our general formulae
(2.3), (2.4) and (2.5). However, the recombination carried
out by the backward electron transfer is also remote especially
as it is usually highly exergonic.
Nonetheless, the contact recombination must not be com-

pletely ruled out. Sometimes the backward charge transfer
can be conducted by proton transfer resulting in production
of two neutral radicals. Such recombinations were the subject
of a few time-resolved investigations35–37 and a theoretical
study of neutral radical accumulation after photoionization.38

Here we will concentrate only on the quantum yield of them
which is js(r) because the radicals are the products of the
contact recombination of the singlet RIP initially separated
by distance r.
In such a case the geminate recombination is subdivided into

either kinetic or diffusional. In the spin-less theory the latter
appears from the general eqn. (2.9) at D~! 0:5,6

lim
~DD!0

jsðrÞ ¼
s

r
; Z ¼ ZS ¼

s

r� s
~DD: ð4:1Þ

Even if spin-conversion is present in the diffusional limit it is so
strong that one can address the alternative eqns. (2.11) and
(2.12). It follows from these equations that the result for Z is
the same regardless of what recombination channel is working:

lim
~DD!0

jsðrÞ ¼ lim
~DD!0

jtðrÞ ¼
s

r
¼ 1� lim

~DD!0

jðrÞ:

Due to complete equilibration of reactive and inactive states
the result remains the same at any recombination rates as long
as recombination is limited by diffusion and not by reaction.
Nothing is changed even if both channels are working with
equal rates (kSc ¼ kTc ¼ kc):

jt þ js ¼ 1� j ¼ s

r

kc

kD þ kc
Z ¼ qz

1þ ð1� qÞz=~DD
; ð4:2Þ

where q ¼ s/r and z ¼ kc/kD . This is the straightforward
extension of the spin-less result of eqn. (5.19) in ref. 5 to a
double-channel reaction. The linear increase of ZS with D~ is
a general feature of any reaction when diffusion is the slowest
process: D~ � (r/s � 1)z.
However, the presence of spin conversion makes the situa-

tion more complex. Diffusion not only facilitates the delivery
of singlet pairs to the contact but also controls their conversion
into triplets. At close starts these two opposite tendencies lead
to the non-monotonic behavior of ZS(D~). Initially, the effect of
a remote start dominates and ZS increases with diffusion but
then it turns down copying the behavior inherent to the con-
tact start: it passes through the minimum and approaches
the kinetic plateau ZS ¼ Z (Fig. 6). With increasing starting
distance the difference between the maximum and minimum
decreases until it disappears completely.
Since the non-monotonous diffusional dependence Z(D~)

takes place at too short initial separations, smaller than the real
tunnelling lengthL� 1 Å, it is only of heuristic interest. Contact
approximation is hardly applicable to such a case and should be
replaced by the theory of remote recombination. At faster diffu-
sion and/or larger initial separations, ZS increases monoto-
nously with D~, as well as in the spin-less theory.5,6

Not less dramatic changes happen to jt when the starting
separation of RIP is too small (Fig. 7). In the case of dou-
ble-channel recombination with equal rates we obtain from
eqns. (2.6) and (2.7):

jt rð Þ ¼
3a

4r

kc

kc þ ð1þ aÞkD
akD

kD þ kc
þ 1� e�aðr�sÞ=s

� 

: ð4:3Þ

This equation describes the rapid initial decrease of jt(r) with
diffusion from its maximal value 3s/4r. It is represented by
descending branches of the curves depicted in Fig.7. The low-
est of them passing through the minimum approach the lower
bell shaped curve related to the contact start. The curves
related to larger initial separations do the same but at faster
diffusion.
When

D~ 	 D~0 ¼ 4ksðr� sÞ2; ð4.4Þ
then in the first order approximation in a it follows from eqns.
(2.3), (2.7) and (2.8) that

js rð Þ ¼ kSc
kSc þ kD

s

r
� 3a 1þ kSc =kD � kSc =4pr

~DD
� �

4 1þ kSc =kD
� �

( )

; ð4:5Þ

Fig. 5 Quantum yields corresponding to efficiencies shown in pre-
vious figures as functions of diffusion given in units Å2 ns�1.

Fig. 6 The singlet efficiency of double-channel recombination for dif-
ferent initial separations of the RIP r (s ¼ 7 Å). Other parameters are
as for Fig. 1
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jt rð Þ ¼ kTc
3a 1þ kSc =kD � kSc =4pr

~DD
� �

4 1þ aþ kSc =kD
� �

kD þ kTc
� � ; ð4:6Þ

and

jðrÞ ¼1� 1

1þ kSc =kD


 kSc

4pr~DD
þ 3a kTc � kSc

� �

1þ kSc =kD � kSc =4pr
~DD

� �

4 kD þ kTc
� �

1þ kSc =kD
� �

( )

:

ð4:7Þ

For the example of double-channel recombination with kSc ¼
kTc ¼ kc we have:

jt rð Þ ¼
3a

4

z

zþ ~DD 1þ að Þ
j rð Þ; j rð Þ ¼

~DDþ ð1� qÞz
zþ ~DD

; ð4:8Þ

where z ¼ kc/4ps and q ¼ s/r as above. According to defini-
tions (1.6)

ZT ¼
3a

4

z~DD

zþ ~DD 1þ að Þ
; Z ¼ qz

1þ 1� qð Þz=~DD
: ð4:9Þ

The latter expression is exactly the same as in eqn. (4.2) while
the former does not depend on q ¼ s/r at all and coincides
with that derived for the contact start in eqn. (3.2).
Moreover, the efficiency of triplet production for remote

starts weakly depends on the initial conditions everywhere
but especially when condition (4.4) is met (Fig. 8). When

ffiffiffiffi

~DD
p

is much larger then
ffiffiffiffiffiffi

~DD0

p

the triplet efficiency for any starting
distance approaches the contact one. Unlike ZS which is satu-
rated in this region, ZT passes through the maximum and turns
to zero as D~!1.
Although Z ¼ ZS+ZT , it is not affected as much as both

constituents when fast spin-conversion gives way to slow
spin-conversion with an increase of D~. The total Z simply
grows monotonously within the diffusion controlled region
and approaches the kinetic plateau qz as D~!1 (Fig. 9).
The latter is lower the larger the initial separation of RIPs.

5 Fitting experimental data

Experimentally the quenching of perylene (Per) by dimethyla-
niline was studied in dimethyl sulfoxide–glycerol mixtures
which allow for a wide variation of solvent viscosity with com-
position, without changing any other physical properties.12

The quantum yields, �jj and �jjt , were obtained through mea-
sured transient absorption of the Per radical anion and Per
triplet state in solutions of different viscosity, Z (Table 1).
The efficiencies of recombination to the ground and triplet
states of the products were calculated from eqn. (2.1) and were
plotted as functions of the encounter diffusion coefficient of the
radical ions (Fig. 10).
Assuming that ions have the same diffusion coefficients as

the corresponding neutral particles, D+ ¼ DD and D� ¼ DA

were estimated through the Stokes–Einstein relationship
corrected by Spernol and Wirtz:39

DX ¼
kBT

fX6pZrX
: ð5:1Þ

Here X is either D or A, the solvent radius rs ¼ 2.5 Å and the
correcting factor

fX ¼ 0:16þ 0:4
rX

rs

� 

0:9þ 0:4~TTX � 0:25~TTs

� �

is expressed through the reduced temperature ~TT ¼ T � Tf

Tb � Tf
,

where Tf and Tb are the freezing and boiling temperatures,
and T~s is also the reduced temperature but for solvent. The cal-
culated values of the encounter diffusion coefficient,
D~ ¼ D++D� , are listed in Table 1.

Fig. 8 The triplet efficiency of double-channel recombination with
equal rates at non-contact starts.

Fig. 9 The total efficiency of double-channel recombination with
equal rates at contact (horizontal line) and remote starts.

Fig. 7 The yield of triplet products for the same non-contact starts as
in the previous figure: r ¼ 7, 7.01, 7.1, 7.5 Å (from bottom to top).
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The theoretical curves shown in Fig. 10 were obtained in
contact approximation, using initial RIP separation r as a fit-
ting parameter in line with kSc , k

T
c and ks . At such a rough fit-

ting the agreement obtained is rather good except for the final
points at the highest diffusion. This is not a surprise because
the efficiency of recombination to the ground state in this sys-
tem was studied earlier and recognized to be anomalous.8,12 It
passes through a maximum and decreases when diffusion accel-
erates. This effect was attributed to non-contact recombina-
tion. At fast diffusion ionization is under kinetic control so
that ions are born near the contact, inside the reaction layer
for recombination to the ground state. The latter is rather
extended or even shifted out of contact when reaction occurs
in the Marcus inverted region due to high exergonicity of
recombination. As a result, the recombination efficiency is hin-
dered by diffusion that helps ions to cross the reaction layer
sooner. This effect was completely lost here because the recom-
bination was assumed contact throughout.
This is even more true for the quantum yields shown in

Fig. 11. Here again only the final points are essentially devia-
ting from the theoretical curves. Only taking into account the
non-contact character of recombination to the ground state
can bend the upper curve and direct it to the lowest point.
As soon as the last ZS turns smaller, both j ¼ D~/
[D~ +ZT+ZS] and jt ¼ ZT/[D~ +ZT+ZS] have to increase
correspondingly making the total agreement better.

The last but not the least argument for such a revision is the
value of initial separation found from the best fit being only 0.1
Å larger than the contact one. Even for proton transfer the
contact approximation is hardly suitable for such a small
separation and definitely inappropriate for electron transfer.
The contact solutions are very unstable regarding the variation
of small r as was demonstrated in Figs. 6 and 7. Insignificant
changes in r strongly affect the results, making the fitting much
less successful. From a physical point of view this is an arte-
fact. Changing the starting position deeply inside the recombi-
nation layer of the width L� 1–2 Å, should not be as crucial.
This is just an indication that contact approximation must be
substituted for one which accounts for the remote recombina-
tion. This makes actual the solution of the present problem
with the non-contact model of WS(r) that can better reproduce
the extremal behavior of the two upper curves in Fig. 10.

6 Conclusions

The contact theory of geminate recombination to the ground
and triplet states is developed. It substitutes the inappropriate
‘‘exponential model ’’ of such a reaction and differs from it by
splitting the spin-forbidden transition into sequential spin-con-
version and recombination stages. However, the spin-conver-
sion is taken into account in the simplest way by assuming a
stochastic transition between the different spin states of RIPs.
The averaging of quantum yields (2.2) over the true initial dis-
tributions f0(r) was also avoided. The unique starting distance
r was assumed constant although the average distance shifts
closer to contact with increasing diffusion.8 Moreover, even
the contact approximation itself is too rough to deal with the
closest starts brought in to the narrow recombination layer.
In view of all these simplifications, agreement between the the-
ory and experiment is surprisingly good, indicating that the
main features of the phenomenon are taken into account.
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Production of Free Radicals and Triplets from Contact Radical Pairs and from
Photochemically Generated Radical Ions
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The quantum yields of triplets and free radicals (or radical ions) that escaped recombination in photochemically
created primary radical pairs (or radical ion pairs) are calculated. As the products of monomolecular
photodissociation, the neutral radicals appear at contact, while the ions are initially distributed over the space
due to distant photoionization (bimolecular electron transfer) in the liquid solution. The diffusional dependence
of the quantum yields is shown to be different when recombination starts from contact or from separated
reactants. The experimental data for recombination of ionized perylene with aromatic amine counterions is
well fitted with the noncontact initial distribution provided the recombination is also noncontact and even
more distant than ionization.

I. Introduction

The formation of free ions and triplets due to recombination/
separation of photochemically created radical ion pairs (RIPs)
was the subject of the numerous investigations starting from
the classical works of Weller and his co-workers.1-7 The yields
of recombination products are very specific functions of
encounter diffusion, which were first given analytic interpreta-
tion in ref 8. This theory was reasonably well fitted to the
experimental data assuming that the recombination is contact
and the counterions are initially separated by a definite distance,
r0. The system studied is excited perylene (A*) quenched by
electron transfer to some aromatic amines (D). The subsequent
incoherent spin conversion proceeding with the rateks

9 makes
possible the RIP recombination to both the singlet and triplet
neutral products accompanied by RIP separation, according to
the following comprehensive scheme:

Here the rate of ionization,WI(r), as well as the rates of
recombination through the singlet and triplets channels,WS(r)
and WT(r), are space dependent.τ is the excitation life time
and the charge separation yield,æj (r), is averaged over the initial
distribution of charges,f0(r):

Setting f0(r) ) δ(r - r0), one can calculate the yield of the
charge separation from any given starting point,æ(r0). It is very
specific for anyr0 and quite different fromæj . The same is true
for the partial yields of the singlet and triplet recombination
and related to their efficiencies. For the averaged yields, these
relationships are given by the following formulas:

whereZS and ZT are the efficiencies of recombination to the
singlet and triplet products, whereas

is the total one, andD̃ is the counterion diffusion coefficient.
As is known,10

This relationship holds also for any particular starting distance
r0, including the contact one.

The difference between the charge separation from contact,
æ(σ), and from the remote start,æj , should be especially
emphasized. The latter is averaged over the true distribution
f0(r), prepared by preceding photoionization. There is a similar
difference between the yields of singlet and triplet neutral
products,æs(σ) and æt(σ), and their averaged values,æj s and
æj t. The same is true for the corresponding recombination
efficiencies.

In principle, the contact yields,æs(σ), æt(σ), andæ(σ), are
worthy of study in their own right. They are the true yields of
the photodissociation products provided the excited molecule
separates into two contact born radicals: A+ hν f A* fæj ) ∫æ(r)f0(r) d3r (1.2)

æj ) D̃

Z + D̃
; æj S )

ZS

Z + D̃
; æj T )

ZT

Z + D̃
(1.3)

Z ) ZS + ZT

æj + æj S + æj T ) 1 (1.4)
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[Ḃ‚‚‚Ċ]. However, the same description of the photoionization
(eq 1.1) serves only as a useful model for understanding the
problem. For the real fitting, all the yields should be averaged
over the preliminary calculated initial distribution of the partners
in the geminate pairs.

To calculateæ(σ) andæt(σ) or æj andæj t, we have to use the
results obtained in ref 8 for the contact recombination in polar
solvents (with Onsager radiusrc ) e2/(εT) < σ):

Here R ) x4ksσ
2/D̃ is a measure of the singlet-triplet

conversion during encounter timeσ2/D̃, andkD ) 4πσD̃ is the
diffusional rate constant. The double-channel contact recombi-
nation, proceeding at only the closest approach distanceσ, is
represented by two rate constants,

They depend on the free energies of electron transfer to the
singlet and triplet products and the electron coupling between
the corresponding states.

Assuming recombination to be contact, eqs 1.5a,b were used
to obtain the yields and recombination efficiencies at the contact
(section II) start. For a remote start, the initial distributions of
ions, f0(r,D̃), have to be calculated for anyD̃. This is done by
means of differential encounter theory (DET)10 in section III
using the exponential model for the ionization rate:

In section IV, the distributions obtained for such a rate were
used for averaging the yields according to recipe 1.2. At small
D̃, the diffusional acceleration of the recombination due to a
remote start was confirmed for fixedr0 . σ, as well as for the
distributed initial separation. In any case, the theory of contact
recombination fits the experimental data only qualitatively,
leaving unexplained the diffusional deceleration of recombina-
tion at the highestD̃.

The quantitative agreement is reached only in section V,
where the exponential rate model is substituted for the contact
one, also for recombination:

Then the diffusional deceleration of the recombination is
naturally explained. This unexpected effect obtained by Dr.
Angulo was first given a proper interpretation in ref 11 using
the rectangular model of the recombination rate or its Marcus
analog in the deeply inverted region. This effect was attributed
to the escape from the extended recombination layer when the
start is taken from inside it.11-13 The spin conversion and
recombination through the triplet channel were ignored in these
works dealing with single channel recombination. Conversely,
the treatment of spin effects in ref 8 was done using the contact
model of recombination, which excludes the possibility of an
inner start. Here we obtain the same effect once again employing

the exponential approximation for both the ionization and
recombination rates, eqs 1.6 and 1.7. This helps us to reach the
best fit to the experimental data of the total efficiency of
recombination, as well as of partial ones, to singlet and triplet
recombination products.

II. Contact Start and Contact Recombination

Settingr ) σ, we obtain from eq 1.5:

If there is no spin conversion,æt(σ) ) R ) 0 but

These are the conventional results of the spin-less theory,10 and
the same gains from eq 2.1 in the exceptional casekc

T ) kc
S,

though the triplet yield is not zero in such a case:

From the general expression forZT andZS derived in ref 8
(eq 3.2), we can specifyZ ) ZT + ZS as well:

It is remarkable thatZT does not depend on the rate of the singlet
recombination; it remains invariant at differentkc

S, unlike Z.
The total efficiency changes withkc

S at any D̃ except the
borders (atD̃ ) 0 andD̃ ) ∞) where alwaysZT ) 0 andZ )
ZS ) z (Figure 1). In accordance with eq 2.4b, there is also
constantZ ≡ z at anyD̃ if kc

S ) kc
T (horizontal line) and the

curvature sign ofZ(D̃) is the opposite forkc
S < kc

T andkc
S > kc

T

(upper and lower curves).
For understanding better the physics that is behind the triplet

efficiency (eq 2.4a), let us represent it like some “in-cage
recombination constant” for the backward electron transfer,kbet,
keeping in mind thatæ ) 1/(1 + Z/D̃) ) 1/(1 + kbet/kD) while
kbet ) kbet

T + kbet
S and

æt(r) ) kc
T3σ
4r

RkD + [1 - e-R(r-σ)/σ](kD + kc
S)

[kD(1 + R) + kc
T](kD + kc

S) + 3
4
RkD(kc

T - kc
S)

(1.5a)

æ(r) ) 1 -
kc

S/(4πrD̃) + (1 - kc
S/kc

T)æt(r)

1 + kc
S/kD

(1.5b)

kc
S ) ∫WS(r) d3r and kc

T ) WT(r) d3r

WI(r) ) Wi exp[-2(r - σ)/l I] (1.6)

WS(r) ) Ws exp[-2(r - σ)/lR] and

WT(r) ) Wt exp[-2(r - σ)/lR] (1.7)

æt(σ) ) 3
4

R
kc

TkD

[kD(1 + R) + kc
T](kD + kc

S) + 3
4

RkD(kc
T - kc

S)
(2.1a)

æ(σ) ) 1

1 + kc
S/kD

-
1 - kc

S/kc
T

1 + kc
S/kD

æt(σ) (2.1b)

æ(σ) ) 1

1 + kc
S/kD

) 1
1 + Z/D

, so that Z )
kc

S

4πσ
) zs

(2.2)

æt(σ) ) 3
4

R
kckD

[kD(1 + R) + kc](kD + kc)
at kc

T ) kc
S ) kc

(2.3)

ZT

D̃
) 3R

4

kc
T

kc
T + kD(1 + R)

(2.4a)

Z
D̃

)
kc

S

kD[1 + 3R
4

kD(1 - kc
T/kc

S)

kc
T + kD(1 + R)] (2.4b)

kbet
T ) 4πσZT ) 3

4
R

kc
TkD

kc
T + kD(1 + R)

)
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4

RkD at kD/kc
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4

R
1 + R

kc
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(2.5)
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where κ ) 16πσ3ks/kc
T is a measure of the relative spin-

conversion strength.
In Figure 2, the diffusional dependence ofkbet

T is shown for
the fast spin conversion (κ > 1). In this limit, there are three
distinguishable regions: diffusional (D), kinetic (K) and spin-
conversion controlled (S). In each of them, the approximate
expressions forkbet

T , deduced from eq 2.5, are exposed. Al-
though the start is taken from contact, the radicals are im-
mediately separated and do not recombine until the next
recontact and the sequence of subsequent ones. The sooner they
follow each other, the faster geminate recombination is acceler-
ated by the diffusion:

When the diffusion becomes too fast, the diffusional control

gives way to kinetic control with

This constant value is an upper limit forkbet
T , which is hardly

attainable. When diffusion increases, the spin conversion
becomes inefficient (R , 1) and starts to control recombination:

Generally speaking the side regions of the diffusional and
spin-conversion control extend toward each other, whenks (as
well asκ) reduces. At very slow spin conversion (κ , 1), the
intermediate kinetic region is expelled entirely as shown in
Figure 3. Simultaneously the maximalkbet

T located atkD/kc
T ) 1

decreases:

When ks f 0, the maximum turns to 0 and the whole curve
disappears. Such a transformation qualitatively coincides with
that studied previously in ref 14 and reviewed in ref 10 (Figure
66). The only distinction is that previously the RIP was created
in the triplet state and recombined due to the spin conversion
via the permitted singlet channel, while now the process is going
back to front.

Another difference is in that here we consider the double
channel recombination, looking for both the singlet and triplet
channel efficiencies. It is true that the latter does not depend
on how strong the former is but not vice versa. If one changes
kc

T, then not only ZT but also ZS as well as Z change
simultaneously. This is demonstrated in Figure 4, whereZ and
ZT are plotted as functions ofxD̃ but contrary to Figure 1,

Figure 1. The total recombination efficiency,Z (upper curves), and
the triplet one,ZT (the lowest curve), shown forkc

S ) kc
T (s), kc

S ) 0.5
kc

T (- - -), andkc
S ) 1.5kc

T (‚‚‚) at kc
T ) 5 × 104 Å3/ns.

Figure 2. The diffusional dependence of the triplet “in-cage recom-
bination constant” at fast spin conversion (κ ) 2), shown by a solid
curve, and the lowest order approximations to this dependence in
diffusional (D), kinetic (K), and spin-conversion controlled (S) regions
(dashed lines). The solid vertical lines mark the boundaries between
these regions, while the dotted line indicates the position of the
maximum.

kbet
T ) 3

4
RkD ) 6πσ2xksD̃ diffusional limit:

kD

kc
T

, 1
κ

, 1

(2.6)

Figure 3. The diffusional dependence of the triplet “in-cage recom-
bination constant” at ten times slower spin conversion than that in Figure
2 (κ ) 16πσ3ks/kc

T ) 0.2), shown by a solid curve, and the lowest
order approximations to this dependence in diffusional (D) and spin-
conversion controlled (S) regions (dashed lines). The solid vertical line
marks the boundaries between these regions.

kbet
T ) 3

4
kc

T kinetic limit:
1
κ

,
kD

kc
T

, κ but R . 1 (2.7)

kbet
T ) 3

4
Rkc

T ) 3
4
kc

Tx4ksσ
2

D̃
spin conversion control:

R , 1 at
kD

kc
T

. κ (2.8)

maxkbet
T ) 3

4
kc

T xκ

2 + xκ
) {3

4
kc

T at κ . 1

3
2xπσ3kskc

T at κ , 1
(2.9)
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now kc
S is kept constant whilekc

T varies. It is remarkable that at
these coordinates the linear asymptote ofZT at xD̃ f 0,
shown by the dashed-dotted line in Figure 4, has the same slope
for any kc

T:

If such a slow diffusion is attainable, it is easy to find fromθ
the rate of the spin conversion,ks, while Z(0) provides us with
kc

S and the argument for maximalZT with kc
T. Having the latter,

one can also extractκ from the height of the maximum (eq
2.9) and use it to findks ) κkc

T/(16πσ3). The low diffusion
region is not reachable.

The total recombination efficiencyZ ) const ifkc
S ) kc

T but
has a positive curvature ifkc

S < kc
T and negative in the opposite

case. UnlikeZT, the total recombination efficiencyZ is never
zero asD̃ f 0, unless the radicals start from the contact.

III. Distribution of Initial Separations of Counterions

The diffusional dependence ofZ is qualitatively different
when the RIPs are the products of bimolecular plotoionization.
The electron transfer proceeding with the space-dependent
ionization rate,WI(r), results in some distribution of RIP over
interion distances,m0(r), which is farther from contact the slower
is the encounter diffusion of neutral reactants,D. The actual
shape of it is given by DET:15,16

In polar solvents, the distribution of reactants,n(r,t), obeys the
following equation17,18

with reflecting boundary condition

whereas the quenching kinetics is given by the expression

The normalized initial distributions

depend on diffusion and the shape ofWI(r).10,19 For ionization
in the normal Marcus region, the exponential model (eq 1.6) is
rather a good approximation. It was used in our calculations
performed with the SSDP2 program.20 The family of initial RIP
distributions that are obtained is shown in Figure 5 and confirms
once again that at faster diffusion the ions are born closer to
the contact distanceσ. As D f ∞, the closest distribution takes
the shape thatWI(r) has.

The starting distance averaged over such distributions

decreases withD until ionization is diffusional, but withD f
∞ it approachesrjmin and remains constant being under kinetic
control (Figure 6). Although in this limitf0(r) coincides in shape
with WI(r), the minimal separation calculated from eq 1.6 is
still larger than the contact distance:rjmin ≈ σ + l/2.

IV. Remote Start and Contact Recombination

Since initially the photogenerated ions are always separated
(at least byl/2), it takes them some time to reach the contact
and recombine there. This time is shorter the faster is (atD f
∞) diffusion of (at D f ∞) ions, which facilitates the
recombination from the remote start.10,19 In such a case, the
total recombination efficiencyZ increases with smallD̃, instead
of being quasi-constant at the contact start considered in the
previous section. In particular, atkc

S ) kc
T ) kc, it is a true

constantZ ) kc/(4πσ), shown in Figure 7 by the horizontal
dashed line, whileZ obtained for the noncontact start (even from
the minimal separationrjmin) is qualitatively different. It grows
with D̃ until recombination is diffusional (region D) and
approaches the constant but lower valueZ ) kc/(4πrjmin), when
it becomes kinetic (region K). The triplet efficiencyZT does

Figure 4. The total (above) and triplet (below) recombination
efficiencies at fixedkc

S ) 5 × 104 Å3/ns but differentkc
T ) kc

S (s)
as well as for lowerkc

T ) 0.5kc
S (‚‚‚) and for the largerkc

T ) 1.5kc
S

(- - -). The slope of all triplet curves atD̃ ) 0 is shown by the
dashed-dotted (-‚-) straight line.

ZT f
3
4
RD̃ ) θxD̃ where θ ) 3

2
σxks (2.10)

m0(r) ) WI(r) ∫0

∞
n(r,t)N(t) dt (3.1)

n̆ ) -WI(r)n(r,t) + D

r2

∂

∂r
r2 ∂n

∂r
(3.2)

4πDr2 ∂n
∂r |r)σ

) 0 and initial one, n(r,0) ) 1 (3.3)

Figure 5. The initial RIP distributions resulting from the exponential
ionization withWi ) 29.12 ns-1 andl I ) 0.81 Å at different encounter
diffusions of neutral precursors:D ) 10-4, 10-6, 10-7, 10-8, or 10-9

cm2/s (from left to right).

N(t) ) exp{-t/τ - c∫ d3r WI(r) ∫0

t
n(r,t′) dt′} (3.4)

f0(r) )
m0(r)

∫m0(r) d3r
(3.5)

rj ) ∫rf0(r) d3r (3.6)
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not experience such dramatic changes: the recombination
accelerated at slow diffusion passes the maximum and slows
down due to spin-conversion control (in region S).

So far we confined ourselves to recombination starting from
a single initial separation (the same at anyD) that was equalized
to eitherσ or rjmin. The results were shown in Figure 7 by dashed
and solid lines, respectively. Now we turn to the initial
conditions changing withD and represent the results by either
filled points when initial separations are distributed according
to f0(r) or empty ones when the start is taken from a single
distancerj(D) (averaged overf0(r), which is different at anyD).

Our calculations address the situation when

In fact, the ion diffusion in polar solvents is a bit slower than
that of the neutral reactants and their relationship to viscosity

η, used actually and previously,8 differs a bit from the Stokes-
Einstein expression in eq 4.1. The latter has just to emphasize
that D and D̃, changing with viscosity, affect simultaneously
both the integrands in eq 1.2,æ(D̃) and f0(D). The results
obtained are specific to particularD ) D̃ changing with
viscosity.

As was expected, the average yield,æj , and the yield from
the average separation,æ(rj), are not identical, as well as the
corresponding efficiencies. However, the difference betweenZ
calculated from the former (b) and from the latter (O) is not
pronounced. SimilarlyZT calculated from the distributed starts
(2) and their average value (4) do not differ too much.
Moreover, the points do not deviate significantly from the solid
curves calculated for the fixed start fromrjmin. However, this
statement is only valid for the fast diffusion limit when
recombination is under kinetic or spin-conversion control and
rj has already approachedrjmin. Along with it, Z approaches its
upper limit, which is the plateau of the height

This plateau is a bit lower than that shown by the dashed line,
which is peculiar for the constant start (kc/(4πσ)).

The situation is rather different in the opposite limit of slow
diffusion, which is mainly studied experimentally. There the
total efficiency of diffusional recombination from the fixed start
should be linear inD̃, as it really is forr0 ) rjmin (upper solid
line in Figure 8). However, the true start at such diffusion is
far away from the near contact region and moves toward it when
diffusion increases. Therefore the points representing recom-
bination from either distributed (b) or average (O) initial
separation lie far below this line. Hence, the diffusional
acceleration of total recombination is actually less efficient for
remote starts, drawing near with diffusion, than for the fixed
and the closest one. Qualitatively the same happens to triplet
efficiency: all related points are below the lower solid line,
though those calculated from average (4) initial separation are
closer to it than those from distributed (2) initial separation.

Figure 6. The average initial RIP separation at different encounter
diffusion. In region D, whererj > rjmin, diffusion controls ionization,
whereas in region K, where ionization is kinetic, the separation becomes
minimal: rj ≈ rjmin ) 7.95 Å.

Figure 7. The efficiencies of recombination from different starts atkc
S

) kc
T ) kc ) 5 × 104 Å3/ns. Total recombination from the contact start

Z ) kc/(4πσ) (- - -) and from minimal separation (s, upper), as
well as from remote start distributed withf0(D) (2) and from the average
initial separation,rj(D) (4), is shown. The efficiency of the triplet
recombination from minimal separation (s, lower), as well as from
the distributed starts (9) and fromrj(D) (0), is also shown.

D ) D̃ ) T
6πση

(4.1)

Figure 8. The efficiencies of recombination from different starts at
kc

S ) kc
T ) kc ) 5 × 104 Å3/ns in slow diffusion domain. Total

recombination from minimal separation (s, upper), as well as from
remote start distributed withf0(D) (2) and from the average initial
separation,rj(D) (4), is shown. The efficiency of the triplet recombina-
tion from minimal separation (s, lower), as well as from the distributed
starts (9) and fromrj(D) (0), is also shown.

lim
D̃f∞

Z )
kc

4πrjmin
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V. Remote Start and Remote Recombination

As a matter of fact, there are no grounds to consider
recombination as contact, except the simplicity of the yields
calculation. There is the unified theory recipe given in ref 10
(section IX E) how to calculate the averaged yields,

expressed via the partial yields of the singlet and triplet
recombination products

that can be found at anyWS(r) andWT(r). All that we need is
the Laplace transformations of the Green functionsp̃SS(r,r′,s)
and p̃ST(r,r′,s), which obey the set of equations for RIPs
subjected to spin conversion and remote double channel
recombination (eqs 9.27 in ref 10):

The encounter diffusion operator

should be used in eqs 5.3a,b together with the reflecting
boundary conditions. Solving these equations for only highly
polar solvents, we ignored the Coulomb interaction, setting to
zero the Onsager radiusrc.

The results presented in Figure 9 were actually obtained using
the program Qyield developed by Dr. Krissinel (see http://
www.fh.huji.ac.il/ krissinel/software.html). It allows the straight-
forward calculation of the singlet and triplet pair densities,
obeying the set:

identical to eqs 9.6 from ref 10 but with reflecting boundary
conditions (andmS(0) ) mT(0) ) 0). Heren andN borrowed
from eqs 3.2 and 3.4 determine also the initial RIP distributions
eqs 3.1 or 3.5. Taking the integrals

we get the photoionization yields of the singlet and triplet
products. They differ fromæj S andφT(r′) by only the multiplier

which is the RIP yield related to the fluorescence yieldη and
Stern-Volmer constant as usual.10

The recombination rates are usually more extended than the
ionization one due to the larger exergonicity of the backward
electron transfer. To account for this feature using the expo-
nential models (eq 1.7), we assumed that

Under this condition, the total efficiency of remote recombina-
tion is a non-monotonous function of diffusion (red line in
Figure 9), contrary to what was obtained in the contact
approximation (the blue line there). This is due to diffusional
deceleration, following the diffusional acceleration of the
recombination. At the greatest diffusion, the initial ion distribu-
tion coincides in shape withWI(r).10 Under condition 5.6, it
appears to be narrower than the recombination layer common
for the singlet and triplet exponential rates (eq 1.7). Therefore
the recombination is weaker the faster the ions get rid of this
layer interior. Passing the maximum, the total recombination
efficiency Z shown by the red line falls off with the further
increase ofD̃.

Finally it approaches the plateau, which is lower than the
kinetic one reached in the contact approximation (blue line).
This pseudo-kinetic value,Z∞, can be found from the fast
diffusion approximation foræj :

whereæ(r) is given by expansion 3.5 in ref 21 valid for a single-
channel recombination:

Here

Figure 9. The total (above) and triplet (below) efficiencies of
recombination obtained with contact (- - -) and exponential (s)
approximations of the recombination layer.

æj S ) ∫æS(r′)f0(r′) d3r′ æj T ) ∫æT(r′)f0(r′) d3r′
æj ) 1 - æj S - æj T (5.1)

æS(r′) ) ∫WS(r)p̃SS(r,r′,0) d3r and

æT(r′) ) ∫WT(r)p̃ST(r,r′,0) d3r (5.2)

-δ(r - r′)/(4πr2) + sp̃SS) ksp̃ST - 3ksp̃SS+ L p̃SS-
WS(r)p̃SS (5.3a)

sp̃ST ) -ksp̃ST + 3ksp̃SS+ L p̃ST - WT(r)p̃ST (5.3b)

L ) D̃
1

r2

∂

∂r
r2 erc/r ∂

∂r
e-rc/r

m̆S ) ksmT - 3ksmS + D̃
1

r2

∂

∂r
r2 erc/r ∂

∂r
e-rc/r mS -

WS(r)mS + WI
Sn(r,t)NS (5.4a)

m̆T ) -ksmT + 3ksmS + D̃
1

r2

∂

∂r
r2 erc/r ∂

∂r
e-rc/r mT -

WT(r)mT (5.4b)

φS(r′) ) ∫0

∞∫WS(r)mS(r,t) d3r dt ) ψæj S,

φT(r′) ) ∫0

∞∫WT(r)mT(r,t) d3r dt ) ψæj T

ψ ) c∫m0(r) d3r ) cκτ
1 + cκτ

) 1 - η (5.5)

lR > l I (5.6)

æj ≈
∫æ(r)WI(r) d3r

∫WI(r) d3r
) 1 -

Z∞

D̃
at D̃ f ∞ (5.7)

æ(r) ) 1 - x
1 + 2λ + 2λ2 - λ(1 + δ + 2λ) e-δ/λ

1 + δ
(5.8)

x ) kc/kD, λ ) lR/2σ, δ ) (r - σ)/σ
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wherekc ) ∫WS(r) d3r is the singlet recombination constant,
while the diffusional recombination constantkD ) 4πσD̃, as
usual. Although this expression was derived for only the singlet
recombination at fast diffusion, it is applicable to our double
channel model as well, since asD̃ f ∞ the triplet recombination
being under spin-conversion control is finally switched off. As
follows from eqs 5.7 and 5.8

whereλI ) lI/(2σ). Z∞ is the height of the red plateau, which is
really a bit lower than the blue one, appearing in the contact
approximation: limDf∞ Z ) kc/(4πrjmin).

However, the principle difference between remote and contact
recombination is seen only in the slow diffusion limit. There
the high peak inZ and related increase inZT makes it more flat
near the maximum. Since this diffusion region is the same as
in real systems, it is worthy of special attention. In Figure 10,
we see these very features first subjected to experimental and
theoretical study in ref 8 but given preliminary noncontact
interpretation only in ref 19, For better fitting, we did not assume
Ws equal toWt but took Ws ) 1.2Wt. Only at the greatest
diffusion, the experimental points deviate a bit from the
theoretical curves, but all the rest are fitted quite well.

VI. Conclusions
Such an excellent fitting does not prove that the theory is

actually the best. There are two essential weaknesses that we
hope to eliminate in the near future.

•The exponential models for the ionization and recombination
rates should be substituted by the Marcus formulas for these
rates, which relate them to the true free energies of the reactions,
as well as to the reorganization energy in a particular solvent.

•The true hyperfine interaction mechanism of spin conversion
should be substituted for the phenomenological rate model of
spin transitions in the RIP.

•The difference in size and encounter diffusion coefficients
of ions and their neutral precursors should be taken into account
especially in polar solvents.

Hopefully these improvements will enable the theory to
correspond better with the fast diffusion experiments and relate
the spin-conversion rate to the true values of the hyperfine
interaction in particular radicals. However, this will not change
our main conclusions:

•The contact reaction approximation can be reasonable for
only heavy particles and proton transfer in liquids, whereas the
electron transfer either forward or backward is not contact.

•The shape and width of the remote transfer rates strongly
affect the yields of reaction products, changing essentially their
diffusional dependence.

The unified encounter theory is the universal instrument for
investigation of any transfer at any diffusion rate.
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Abstract

The recombination/separation of the radical pair from its singlet and triplet state is studied. The spin conversion in a pair is consid-
ered as a stochastic (incoherent) process, assuming that the recombination of both singlet and triplet radical pairs is contact. The quan-
tum yields of recombination products and free radical production are calculated for any initial separation of radicals in a pair.
� 2005 Elsevier B.V. All rights reserved.
1. Introduction

The pair of radicals created in either of its singlet or trip-
let states can recombine from there in the singlet or triplet
products or be separated with quantum yield u:

Scheme I

Dþ 3A�  3½ _D � � � _A� ! _Dþ _A ð1:1aÞ
#" u

Dþ A 1½ _D � � � _A� ! _Dþ _A. ð1:1bÞ
The quantum yield of recombination through either the
singlet or triplet channels (or through them both) is
1 � u where the quantum yield of free radicals

u ¼ 1

1þ Z=D
. ð1:2Þ

Generally, the recombination efficiency Z = ZS + ZT but it
coincides with that for a single channel, ZS or ZT, if an-
other channel is switched off [1]. The spin conversion in
the radical pair allows the recombination to proceed in
whatever channel is switched on. The conversion is carried
out by spin relaxation with transversal and longitudinal
times T2 and T1 as well as by mixing of the S and T0 states,
with a frequency
0301-0104/$ - see front matter � 2005 Elsevier B.V. All rights reserved.
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X ¼ xA � xB

2
. ð1:3Þ

Here, x = gbH/�h is the Zeeman frequency in the magnetic
field H, which is different for the two radicals in a pair, A
and B, provided they have different g-factors (Dg = gA �
gB 5 0). If T1 =1, only two states, S and T0, are worthy
of consideration because the other two, T+ and T�, remain
out of the game.

This particular case of a two-level system is equally good
as a model of spin conversion induced by the hyperfine inter-
action (HFI) in high magnetic fields [2]. This model was the
subject of a detailed investigation in our recent work [3]
where the pair was assumed to be initially separated by dis-
tance r = r0 but recombines only at contact (at r = r) with
the rate constants kS

c and kT
c for alternative channels. If the

start is also from contact (r0 = r) and from the singlet state
of a pair the recombination efficiency was shown to be [3]

Z ¼

zs

2
2þa
1þa ¼ ZS at kT

c ¼ 0;

z ¼ kc

4pr at kT
c ¼ kS

c ¼ kc;
zt

2
a

1þaþzt=D ¼ ZT at kS
c ¼ 0;

8

>
>
<

>
>
:

ð1:4Þ

where zs ¼ kS
c=4pr, zt ¼ kT

c =4pr and D is the coefficient of
the encounter diffusion of radicals in a pair. The results ob-
tained for the contact recombination through single chan-
nel in [2], as well as in earlier work [4], were shown to be
identical with that presented in Eq. (1.4) [3].
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Generally, the important parameter a is a complex func-
tion of diffusion, the recombination constant and conver-
sion frequency. The latter is responsible for the magnetic
field effect in the case of the Dg-mechanism of spin conver-
sion [5]. Only in the limit of stochastic (incoherent) conver-
sion the expression for a becomes rather simple and does
not depend on recombination

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
sd

T 2

ð1þ X2T 2
2Þ

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2sd
1

T 2

þ k0

� �
s

provided XT 2 � 1. ð1:5Þ

Here, sd = r2/D is the encounter time while

k0 ¼ X2T 2 ð1:6Þ

is the rate of stochastic spin conversion. This very rate has
to be used further on because the present work is also con-
fined to the incoherent spin conversion. However, this time
we will consider the general four-level spin system which
represent the radical pair with arbitrary T1. This pair, sub-
jected to double channel recombination ðkS

c 6¼ 0 6¼ kT
c Þ,

starts from singlet spin state and any initial separation of
the radicals in a pair (r0 P r).

2. Diffusional kinetic equations

The basic set of four equations relates the singlet state
population, qS, and the three populations of the triplet
sub-levels q0, q+ and q� [3,4]

_qS ¼ k0 þ
1

T 2

� 1

2T 1

� �

q0 � k0 þ
1

T 2

þ 1

2T 1

� �

qS

þ qþ þ q�
2T 1

þ LqS; ð2:1aÞ

_q0 ¼ k0 þ
1

T 2

� 1

2T 1

� �

qS � k0 þ
1

T 2

þ 1

2T 1

� �

q0

þ qþ þ q�
2T 1

þ Lq0; ð2:1bÞ

_qþ ¼
qS þ q0

2T 1

� qþ
T 1

þ Lqþ and _q� ¼
qS þ q0

2T 1

� q�
T 1

þ Lq�;

ð2:1cÞ

where

L ¼ ~D
1

r2

o

or
r2e�UðrÞ=kBT o

or
eUðrÞ=kBT ð2:2Þ

is an operator of the encounter diffusion in the inter-parti-
cle potential U(r). For an ion–radical pair this is the Cou-
lomb interaction U(r) = �rc/r, with Onsager radius rc = e2/
ekBT (at temperature T and dielectric constant e).

The set of equations (2.1) should be solved with radia-
tion boundary conditions at contact

jqSjr¼r ¼ kS
c qSðr; r0; tÞ; jqijr¼r ¼ kT

c qiðr; r0; tÞ; i¼þ;0;�;
ð2:3Þ
where jðrÞ ¼ 4pr2 ~D o
or eUðrÞ=kBT is an operator of flux at dis-

tance r. The initial conditions select the spin state where
the radical pair was born at t = 0

qSðr; r0; 0Þ ¼
dðr � r0Þ

4pr2
; qiðr; r0; 0Þ ¼ 0; i ¼ þ; 0;�.

ð2:4Þ
Neglecting the Coulomb and any other interactions between
radicals, we set U(r) = 0 and turn the diffusional operator
(2.2) to the simplest form: Lq ¼ DDq ¼ Dðq00 þ 2

r q0Þ. Then
making the Laplace transformation of equations (2.1) with
initial conditions (2.4) we obtain the set of uncoupled
equations for the r-dependent quantities ~qk ¼

R

qkðr; r0; tÞ
expð�stÞ dt

~q00 þ 2

r
~q0 � s

D
~q ¼ � dðr � r0Þ

4pr2D
; ð2:5aÞ

~q00D þ
2

r
~q0D �

sþ 2ðk0 þ 1=T 2Þ
D

~qD ¼ �
dðr � r0Þ

4pr2D
; ð2:5bÞ

~q00a þ
2

r
~q0a �

sþ 2=T 1

D
~qa ¼ �

dðr � r0Þ
4pr2D

; ð2:5cÞ

~q00b þ
2

r
~q0b �

sþ 1=T 1

D
~qb ¼ 0; ð2:5dÞ

where

q ¼ qS þ q0 þ qþ þ q�; qD ¼ qS � q0;

qa ¼ qS þ q0 � qþ � q�; qb ¼ qþ � q�.

On the other hand, these variables relate to each other
through the boundary conditions

4pDr2 oq
or

�
�
�
�
r¼r

¼ kS
c þ 3kT

c

4
qðr; r0; tÞ þ

kS
c � kT

c

2
qDðr; r0; tÞ

þ kS
c � kT

c

4
qaðr;r0;tÞ; ð2:6aÞ

4pDr2 oqD

or

�
�
�
�
r¼r

¼ kS
c � kT

c

4
qðr; r0; tÞ þ

kS
c þ kT

c

2
qDðr; r0; tÞ

þ kS
c � kT

c

4
qaðr;r0;tÞ; ð2:6bÞ

4pDr2 oqa

or

�
�
�
�
r¼r

¼ kS
c � kT

c

4
qðr; r0; tÞ þ

kS
c � kT

c

2
qDðr; r0; tÞ

þ kS
c þ 3kT

c

4
qaðr;r0;tÞ; ð2:6cÞ

4pDr2
oqb

or

�
�
�
�
r¼r

¼ kT
c qbðr; r0; tÞ. ð2:6dÞ

The last equation is separated from the others and can be
omitted because the quantum yields we have to calculate
do not depend on qb but are expressed only through the
other three variables.

The triplet products are truly determined by only the
triplet sub-level populations integrated over time

utðr0Þ ¼ kT
c ½~q0ðr; r0; 0Þ þ ~qþðr; r0; 0Þ þ ~q�ðr; r0; 0Þ�

¼ kT
c

3

4
~qðr; r0; 0Þ �

1

2
~qDðr; r0; 0Þ �

1

4
~qaðr; r0; 0Þ

� �

.

ð2:7Þ



Table 1
General solution for the set (2.5)

r < r0 r > r0

~q (a1/r)exp{�ra0/r} + (a2/r)exp{ra0/r} (a3/r)exp{�ra0/r}
~qD (b�/r)exp{�raD/r} + (b2/r)exp{raD/r} (b3/r)exp{�raD/r}
~qa (c1/r)exp{�raa/r} + (c2/r)exp{raa/r} (c3/r)exp{�raa/r}
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As to the free radicals, their yield is actually q(r, r0,1)
integrated over space

uðr0Þ ¼
Z

lim
s!0

s~qðr; r0; sÞ d3r

¼ 1� kD j0 � j
2

h i

~qðr; r0; 0Þ þ j~qDðr; r0; 0Þ
n

þ j
2

~qaðr; r0; 0Þ
o

; ð2:8Þ

where

j ¼ kS
c � kT

c

2kD

; j0 ¼ kS
c þ kT

c

2kD

. ð2:9Þ

As to the last quantum yield, for singlet products, it can be
obtained from the first two and the conservation law [1]

usðr0Þ ¼ 1� utðr0Þ � uðr0Þ. ð2:10Þ
It is common and useful to represent all the quantum yields
as follows [1,6]:

u ¼ D
Dþ Z

; ut ¼
ZT

Dþ Z
; us ¼

ZS

Dþ Z
; ð2:11Þ

where ZT and ZS are the efficiencies of recombination from
the triplet and singlet states of a pair and Z = ZT + ZS is
the total recombination efficiency.

3. Solution of the problem

From the structure of equations (2.5a)–(2.5c) we see that
their solutions are the generalized functions [7] continuous
in the whole r-domain, but their derivatives have disconti-
~q ¼ � 1

4pDr0

b kS
c�kT

c

kT
c þkD
þ kS

c�kT
c

kD

h i

eað1�r0=rÞ þ a kS
c�kT

c

2ðkT
c þkDÞ

þ kS
c�kT

c

2kD

h i

ebð1�r0=rÞ þ P

a b
2kDþ3

2kT
c þ1

2kS
c

kT
c þkD

þ 2þ kS
cþkT

c

kD

h i

þ b 2þ 3kS
cþkT

c

2kD

� 	

þ 2 1þ kS
cþkT

c

kD
þ kS

c kT
c

k2
D

h i ;

~qD ¼ �
1

4pDr0

kS
c�kT

c

2kD
ebð1�r0=rÞ þ b kS

c�kT
c

2ðkT
c þkDÞ

þ kS
c�kT

c

2kD
� b 3kT

c þkS
cþ4kD

2ðkT
c þkDÞ

þ 2þ kT
c þkS

c

kD

h i

eað1�r0=rÞ

a b
2kDþ3

2kT
c þ1

2kS
c

kT
c þkD

þ 2þ kS
cþkT

c

kD

h i

þ b 2þ 3kS
cþkT

c

2kD

� 	

þ 2 1þ kS
cþkT

c

kD
þ kS

c kT
c

k2
D

h i ;

~qa ¼ �
1

4pDr0

kS
c�kT

c

kD
eað1�r0=rÞ þ a kS

c�kT
c

2ðkT
c þkDÞ

þ kS
c�kT

c

2kD
� a 3kT

c þkS
cþ4kD

2ðkT
c þkDÞ

þ kT
c þ3kS

cþ4kD

2kD

h i

ebð1�r0=rÞ

a b
2kDþ3

2kT
c þ1

2kS
c

kT
c þkD

þ 2þ kS
cþkT

c

kD

h i

þ b 2þ 3kS
cþkT

c

2kD

� 	

þ 2 1þ kS
cþkT

c

kD
þ kS

c kT
c

k2
D

h i ;
nuities at r = r0. At any r 5 r0 the equations are homoge-
neous and their solutions take into account that any
~qðr ¼ 1Þ ¼ 0. They are displayed in Table 1,

where

a0 ¼ r
ffiffiffiffiffiffiffiffi

s=D
p

; aD ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðsþ 2ðk0 þ 1=T 2ÞÞ=D
p

;

aa ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðsþ 2=T 1Þ=D
p

. ð3:1Þ
The numerical constants a1,2,3, b1,2,3 and c1,2,3 have to be
found from the boundary conditions (2.6a)–(2.6c), taking
into account that at r = r0 all the functions defined at
r < r0 must be sewed together with their prolongations at
r > r0. With these nine constants one can get the exact val-
ues of ~qðr; r0; sÞ, ~qDðr; r0; sÞ and ~qaðr; r0; sÞ which are the
very complex expression given in Appendix A. Making in-
verse Laplace transformation of them one can recover the
kinetics of geminate recombination.

Fortunately for the calculations of quantum yields from
Eqs. (2.7) and (2.8) we need only the densities ~qðr; r0; 0Þ,
~qDðr; r0; 0Þ, ~qaðr; r0; 0Þ that can be easily obtained from
Eqs. (A.1)–(A.3) setting r = r and s = 0. In this particular
case only two parameters characterizing the spin conver-
sion remain non-zero:

a0 ¼ 0; aD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
sd

T 2

ð1þ k0T 2Þ
r

¼ a; aa ¼
ffiffiffiffiffiffiffiffiffi

2
sd

T 1

r

¼ b.

ð3:2Þ
The first, a, coincides with that in Eq. (1.5) although the
latter was introduced in the two-level theory assuming
T1 =1. In the present four-level theory the longitudinal
relaxation is taken into account by a newly introduced
parameter b 5 0, but all the magnetic field effects are still
accounted for by a, through k0 defined in Eq. (1.6)
where

P ¼ �a
2kDðbþ 1Þ þ 3

2
kT

c þ 1
2
kS

c

kT
c þ kD

� b
kS

c þ kT
c þ 2kD

kD þ kT
c

� 3kS
c þ kT

c þ 4kD

2kD

.

Substituting these results at b = 0 into the general defini-
tions (2.7) and (2.8), we reproduced the expressions for
ut(r0) and u(r0) that have been derived for the two-level
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system in [3], by a completely different method: see Eqs.
(4.3) and (4.4) in this work.

4. Contact start

In the vast majority of analytical studies of the phenom-
enon, it was assumed for simplicity that the radicals are
created at contact distance r [1,2,4]. To compare with them
we have to do the same, setting r0 = r. In this particular
case, the last formulae truly become much more simple:
~q ¼ 2

kD

a kT
c þkDð1þbÞ

kT
c þkD

þ bþ kT
c þkD

kD

a b
2kDþ3

2kT
c þ1

2kS
c

kT
c þkD

þ 2þ kS
cþkT

c

kD

h i

þ b 2þ 3kS
cþkT

c

2kD

� 	

þ 2 1þ kS
cþkT

c

kD
þ kS

c kT
c

k2
D

h i ; ð4:1aÞ

~qD ¼
2

kD

bþ kT
c þkD

kD

a b
2kDþ3

2kT
c þ1

2kS
c

kT
c þkD

þ 2þ kS
cþkT

c

kD

h i

þ b 2þ 3kS
cþkT

c

2kD

� 	

þ 2 1þ kS
cþkT

c

kD
þ kS

c kT
c

k2
D

h i ; ð4:1bÞ

~qa ¼
2

kD

aþ kT
c þkD

kD

a b 2kDþ3
2kT

c þ1
2kS

c

kT
c þkD

þ 2þ kS
cþkT

c

kD

h i

þ b 2þ 3kS
cþkT

c

2kD

� 	

þ 2 1þ kS
cþkT

c

kD
þ kS

c kT
c

k2
D

h i . ð4:1cÞ
Using them in Eqs. (2.7) and (2.8) we calculated the quan-
tum yields and deduced from them the recombination effi-
ciencies. The expressions for any of them are always much
simpler than for the corresponding yields

Z=D ¼ 1

kD

kS
c þ

1
2
aðkT

c � kS
c Þ

1þ aþ kT
c =kD

þ
1
4
bðkT

c � kS
c Þ

1þ bþ kT
c =kD

" #

. ð4:2Þ

In the particular case of a two-level system (b = 0), the gen-
eral expression (4.2) reduces to the following simpler
formula:

Z=D ¼ kS
c

kD

1þ aðkT
c � kS

c Þ
2kS

c ðaþ 1þ kT
c =kDÞ

" #

; ð4:3Þ

found in [3].
In the pioneering work of Schulten and Schulten [8] the

spin-conversion was assumed to be separated from the in-
ter-particle dynamics due to the equality of the recombina-
tion constants

kS
c ¼ kT

c ¼ kc. ð4:4Þ
In this particular case, the total recombination efficiency
(4.2) does not depend on the spin-conversion at all and is
equal to the conventional parameter z of the simplest expo-
nential model, as in Eq. (1.4) [5,6]. That is

Z ¼ z and u ¼ 1

1þ z=D
ð4:5Þ

at any k0, that is at any magnetic field.
At the same time, the recombination to the triplet prod-

uct is always spin dependent. As follows from Eqs. (2.7)
and (2.11):
ZT=D ¼ kT
c

2kD

a

1þ aþ kT
c =kD

þ b

2ð1þ bþ kT
c =kDÞ

" #

. ð4:6Þ

The efficiency of recombination to the singlet one, follow-
ing from Eqs. (2.11) and (2.8), is also spin-dependent:

ZS=D ¼ kS
c

2kD

aþ 2ð1þ kT
c =kDÞ

1þ aþ kT
c =kD

� b

2ð1þ bþ kT
c =kDÞ

" #

.

ð4:7Þ
As always Z = ZT + ZS, and each of the components is dif-
fusion dependent.

5. Relation to other theories

In the particular case of a two-level system (b = 0) the
result (4.6) reduces to that obtained in [3]

ZT=D ¼ kT
c

kD

a=2

ð1þ aþ kT
c =kDÞ

at T 1 ¼ 1. ð5:1Þ

On the other hand, rather different result was found earlier
in [1]

ZT=D ¼ kT
c

kD

3a0=4

ð1þ a0 þ kT
c =kDÞ

at T 1 ¼ T 2 ¼ T 0; ð5:2Þ

where a0 is expressed through the spin-conversion rate ks

defined in [6]

a0 ¼
ffiffiffiffiffiffiffiffiffiffiffi

4kssd

p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2sd

1

T 0

þ 2X2T 0

3

� �
s

. ð5:3Þ

The last results were derived within the simplified model of
spin conversion used in a number of previous works [5,9–
12]

1½ _A � � � _D� ¢
3ks

ks

3½ _A � � � _D�

+ kS
c + kT

c

½A � � �D� ½3A� � � �D�

ð5:4Þ

According to this model the spin conversion equally mixes
the singlet state with all three sub-levels of the triplet one.
That is the reason why the last result differs from the



Fig. 2. The single-channel recombination efficiencies, from the triplet
(above) and singlet (below), as functions of the magnetic field in square
(X2 � H2) at D = 1.2 · 10�5 cm2/s, r = 7 Å, T0 = 0.1 ns and z = 1.14 ·
10�5 cm2/s. The exact results given by Eqs. (4.6) and (5.8) are represented
by the solid lines and their linear interpolations, Eqs. (5.7) and (5.11), by
dashed lines.
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previous one. The simple analysis shows that this result fol-
lows from the general formula (4.6) provided that:

X ¼ H ¼ 0 and a ¼ b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2sd=T 0

p

. ð5:5Þ
Hence, in the extreme case of equal relaxation times (usu-
ally presumed), the model (5.4) is exact in the zero mag-
netic fields provided the recombination rates through
different channels are equal as in Eq. (4.4). Under this con-
dition the total yield u from Eq. (4.5) can be used as an
argument (instead of diffusion) to study the other yields
as functions of u changing in the finite limits, 0 6 u 6 1
[8,3]. In Fig. 1, the diffusional dependence of the yields pre-
sented in such a way demonstrates the non-monotonous
behavior of uT unlike uS, decreasing monotonously with
diffusion. The latter is the difference between the diagonal
and the curves which represent uT. One of them (at a = b
coincides with that resulting from the model calculations
of uT, while another (b = 0) is the same quantity exactly
calculated for the two-level system and shown in Fig. 2
of [3].

In moderate fields the spin-conversion parameters, a and
a0 can be expanded in XT0� 1

a � bð1þ X2T 2
0=2Þ; ð5:6aÞ

a0 � bð1þ X2T 2
0=3Þ. ð5:6bÞ

In the first-order approximation with respect to X2T 2
0, we

have from the exact expression (4.6) as well as from its
model analog, Eq. (5.2), one and the same result

ZT=D ¼ kT
c

kD

3b=4

1þ bþ kT
c =kD

1þ X2T 2
0

3

1þ kT
c =kD

1þ bþ kT
c =kD

 !

;

where b ¼
ffiffiffiffiffiffiffiffiffi

2
sd

T 0

r

. ð5:7Þ
Fig. 1. The partition of all the products of double-channel recombination
with equal rates into three components: the free radicals quantum yield u,
the yield of triplets uT, and that of singlets, uS = 1 � u � uT. At b = a
and zero field the present theory confirms the results following from the
model (5.4) while at b = 0 it reproduces the situation when only two
interacting levels remain in the system [3].
Hence, in the lowest-order approximation the simple model
(5.4) describes the magnetic field effect as accurate as the
present theory. This approximation is quasi-linear in
X2 � H2 until X2T 2

0 � 1 (Fig. 2).
Another situation appears if the triplet channel is

switched off. When kT
c ¼ 0 the recombination proceeds

through the singlet channel alone and the general formula
(4.2) reduces to the particular one

Z ¼ z
2

2þ a
1þ a

� b
2ð1þ bÞ

� �

¼ ZS z ¼ kS
c

4pr
. ð5:8Þ

This is exactly what was obtained in the first single-channel
theory of Mints and Pukhov [4]. The efficiency of recombi-
nation in the two-level system [3] follows from here at b = 0

Zs ¼ z
1þ a=2

1þ a
; b ¼ 0. ð5:9Þ

A similar result was obtained for the four-level model in [1]

ZS ¼ z
1þ a0=4

1þ a0

. ð5:10Þ

In the zero field (when X = 0), the latter result coincides
with that following from the general Eq. (5.8) at a =
a0 = b. In moderate fields, the exact and model results
are also identical but in the lowest-order in X2T 2

0 (see
Fig. 2)

Z ¼ z
1þ b=4

1þ b
� X2T 2

0

4

b

ð1þ bÞ2

" #

. ð5:11Þ

This provides evidence that the simple model (5.4) is prac-
tically sufficient for studying the radical reactions assisted
by an incoherent spin conversion.

It should be stressed that ZT from Eq. (4.6) remains the
same at any kS

c . However, this is not true regarding the triplet



Fig. 3. The diffusional dependence of the triplet quantum yield at
kS

c ¼ 0; kS
c ¼ 0:5kT

c ; kS
c ¼ kT

c (from top to bottom) at XT0 = 0.14 and
kT

c ¼ 104 Å
3
=ns. The rest of the parameters are the same as in the previous

figure.

Fig. 4. The magnetic field effect for single-channel recombination through
either the triplet (below) or singlet (above) states in the linear approxi-
mation regarding X2 � H2 shown by the dashed lines in Fig. 2.
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quantum yield ut = ZT/(D + Z). In particular, ut = ZT/
(D + z) if the recombination rates are equal ðkS

c ¼ kT
c ; Z =

z = const). In this case the diffusional dependence ut(D)
duplicates the bell shape of ZT. On the contrary, at kS

c ¼
Zs ¼ 0, when the singlet recombination channel is switched
off, Z = ZT, and the triplet yield ut = ZT/(D + ZT) falls
monotonously with D, from 1 to 0. Fig. 3 shows how the lat-
ter transforms to the former when kS

c increases.

6. Magnetic field effects

Both recombination efficiencies (4.6) and (4.7), depend
on magnetic field through the single parameter a contain-
ing X � H. Therefore, the magnetic field affects also the
quantum yields (2.11) but only the H-dependence of the
free radicals quantum yield was studied experimentally
until now. The conventional measure of the magnetic field
effect (MFE) can be represented as follows:

M ¼ uðHÞ � uð0Þ
uð0Þ ¼ Zð0Þ � ZðHÞ

Dþ ZðHÞ . ð6:1Þ

The incoherent description of the field induced spin-conver-
sion is valid at rather low or moderate magnetic fields when

X2T 2
0 ¼

DgbHT 0

�h

� �2

� 1. ð6:2Þ

Under this condition, we can use the lowest-order expan-
sion of Z in this parameter.

For the particular case of single-channel recombination
from the triplet state, Z = ZT is given by expression (5.7)
linear in X2T 2

0. The corresponding MFE is also linear with
the same accuracy

M ¼ � kT
c

kD

bð1þ kT
c =kDÞ

4ð1þ bþ kT
c =kDÞ

X2T 2
0

1þ kT
c =kD þ b 1þ 3

4
kT

c =kD


 �

at kS ¼ 0. ð6:3Þ
c
In the opposite case of recombination via only a singlet
channel, the linearized function (5.11) should be used in-
stead in Eq. (6.1) to get the following:

M ¼ kS
c

kD

b
4ð1þ bÞ

X2T 2
0

1þ kS
c=kD þ b 1þ 1

4
kS

c=kD


 �

at kT
c ¼ 0. ð6:4Þ

As can be seen from Fig. 4 the MFE has the opposite signs
for the considered alternative limits. Being linear in X2T 2

0 it
is quadratic in the magnetic field H. However, the scale of
MFE is limited to a 1–2% within the field interval (6.2) cov-
ered by the incoherent theory. In reality much stronger
fields are available and the MFE can reach 25% [18]. For
a quantitative description of such large effects, the general
coherent theory must be used instead as has been done in
[11]. The present theory is exact for spin conversion in a
zero field but only an approximation for the non-zero field
of low and moderate strength.

7. Conclusions

We present here a general solution for the problem of
singlet radical pair recombination at contact through one
or two parallel channels, assuming that it is assisted by
incoherent spin conversion executed by spin relaxation
and the Dg-mechanism. It reproduces all the efficiencies
of contact recombination obtained earlier within the rate
description of spin conversion as well as their diffusional
and field dependencies. It was shown that the exact and
model treatment of the problem lead to the results which
are identical in the lowest-order approximation in the mag-
netic field. Our general results, valid at any initial separa-
tion of radicals in a pair, r0, can be averaged over the
initial distribution of these distances f(r0) if it is known.

The main restriction of the theory is the stochastic (rate)
description of spin conversion in a non-zero magnetic field.
It is justified if spin relaxation in radicals is much faster
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than the difference between their resonance frequencies.
This condition is met in a number of transition metal com-
plexes with strong spin–orbital coupling [13–15], where
T2 � T1 � 10 ps. Quite the opposite is the situation with or-
ganic radicals whose spin relaxation is about a few ls while
the frequency of the hyperfine interaction responsible for
spin conversion is higher than the relaxation rates. This is
the coherent conversion that was widely studied, as well
as the magnetic field effects resulting from it. However, to
the best of our knowledge all these studies were confined
to single channel recombination. The double-channel
recombination assisted by coherent conversion is still open
for discussion.

Another restriction is the contact approximation of
recombination. In fact, the latter is distant at least for elec-
tron tunnelling in radical–ion pairs, at high exergonicity of
their recombination [16,6]. This limitation can be overcome
with a numerical solution of the problem, as it was done in
[17,6] for the particular tunnelling rate, W(r � r).

It also should be mentioned that the most of the authors
confined themselves to a single channel recombination of
singlet born radical pair, whereas Mints and Pukhov took
also into consideration the radical pair born in either of the
triplet sub-states. Such an initial condition, as well as the
start from the equally populated triplet sub-states, is wor-
thy of separate study which is now in progress.

Appendix A

After long and cumbersome calculations, we obtained
the following results:
~q ¼ r
8pDa0rr0

e�jr�r0ja0=r þ 4ja0ðjþ d�Þea0ð1�r=rÞþaDð1�r0=rÞ þ 2ja0ðjþ b�Þea0ð1�r=rÞþaað1�r0=rÞ þ P 1ea0ð2�ðrþr0Þ=rÞ

2j½j2 � b�ðc� þ d�Þ=2� þ j2ðc� þ d�Þ � 2b�c�d�

� �

; ðA:1Þ

~qD ¼
r

8pDaDrr0

e�jr�r0jaD=r þ 2jaDðjþ c�ÞeaDð1�r=rÞþaað1�r0=rÞ þ 2jaDðjþ d�ÞeaDð1�r=rÞþa0ð1�r0=rÞ þ P 2eaDð2�ðrþr0Þ=rÞ

2j½j2 � b�ðc� þ d�Þ=2� þ j2ðc� þ d�Þ � 2b�c�d�

� �

; ðA:2Þ

~qa ¼
r

8pDaarr0

e�jr�r0jaa=r þ 4jaaðjþ c�Þeaað1�r=rÞþaDð1�r0=rÞ þ 2jaaðjþ b�Þeaað1�r=rÞþa0ð1�r0=rÞ þ P 3eaað2�ðrþr0Þ=rÞ

2j½j2 � b�ðc� þ d�Þ=2� þ j2ðc� þ d�Þ � 2b�c�d�

� �

; ðA:3Þ
where j and j 0 were defined in Eq. (2.9),
P 1 ¼ 2b�cþd� þ jðcþ þ d�Þðb� � jÞ � 2j3;

P 2 ¼ 2bþc�d� þ jðc� þ d�Þðbþ � jÞ � 2j3;

P 3 ¼ 2b�c�dþ þ jðc� þ dþÞðb� � jÞ � 2j3

and
c	 ¼ �1	 a0 � j0;

b	 ¼ �1	 aD � j0;

d	 ¼ �1	 aa � j0.

If there is no recombination kS
c ¼ kT

c ¼ 0, j ¼ j0 ¼ 0 and all
~qðr; r0; sÞ, ~qDðr; r0; sÞ, ~qaðr; r0; sÞ reduce to the correspond-
ing Green-functions

~q ¼ r
8pDa0rr0

e�jr�r0ja0=r � 1� a0

1þ a0

ea0ð2�ðrþr0Þ=rÞ
� �

;

~qD ¼
r

8pDaDrr0

e�jr�r0jaD=r � 1� aD

1þ aD
eaDð2�ðrþr0Þ=rÞ

� �

;

~qa ¼
r

8pDaarr0

e�jr�r0jaa=r � 1� aa

1þ aa
eaað2�ðrþr0Þ=rÞ

� �

.
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Double-Channel Contact Recombination of Radical Pairs Subjected to Spin Conversion via
the ∆g Mechanism
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The contact recombination from both singlet and triplet states of a radical pair is studied assuming that the
spin conversion is carried out by the fast transversal relaxation and∆g mechanism. The alternative HFI
mechanism is neglected as being much weaker in rather large magnetic fields. The magnetic-field-dependent
quantum yields of the singlet and triplet recombination products, as well as of the free radical production, are
calculated for any initial spin state and arbitrary separation of radicals in a pair. The magnetic field effect is
traced and its diffusional (viscosity) dependence is specified.

1. Introduction

The most general diffusional theory of contact but spinless
geminate recombination of an ion pair was developed by Hong
and Noolandi.1 Later on, the theory was developed further in a
few works2,3 and extended for the noncontact recombination
from any starting distance between reactants4,5 (see also section
VIIB in the review6).

However, as was recognized long ago, in pairs of radicals or
ion radicals the recombination is affected by spin conversion
between initially populated and other spin states. Such a
conversion is carried out by the spin relaxation and/or some
mechanisms acting in a magnetic field. These are the∆g
mechanism of spin conversion in pairs of radicals having
differentg factors and the mechanism of the hyperfine interac-
tion (HFI) between the electron and nuclear spins if any. The
HFI mechanism alone was studied a number of times assuming
that the radical recombination proceeds via a single channel
(either singlet or triplet).7 This is a situation typical for the
radical pairs with such long spin relaxation timesT2 and T1

that the corresponding rates 1/T2 and 1/T1 are negligible in
comparison with a rather large HFI constantA. Just recently,
HFI theory was extended for the double-channel recombination
which proceeds into both singlet and triplet products though in
a zero magnetic field.8 Here, we are going to do quite the
opposite: neglecting HFI in comparison with the fast transversal
spin relaxation 1/T2, we will study the magnetic field effect
(MFE) produced by the∆g mechanism of spin conversion. The
spin relaxation really dominates over HFI in transition metal
complexes with strong spin-orbital coupling.9-11 The exact
solution of this problem will be obtained analytically assuming
that recombination from the singlet and triplet states of the
radical pair proceeds only at contact, with the constantskc

S and
kc

T, respectively. ProvidedAT2 , 1 is really negligible, the
theory is valid at arbitrary magnetic fields though it takes into
account only the∆g mechanism of spin conversion.

The pair of radicals created in either of its singlet or triplet
states can recombine from there in the singlet or triplet products
or be separated with the quantum yieldæ.

Here,T2 is the transversal relaxation time assumed to be the
same in both radicals and

Here,â0 is the Bohr magneton,∆g ) g+ - g- whereg+ and
g- areg factors of radical ions in a pair andH is the external
magnetic field.

Unlike the majority of our previous works reviewed in refs
6 and 12, here, we do not assume thatΩT2 , 1, allowing the
spin conversion to be coherent in a large field. The best
analytical solution of this problem valid at anyΩ was obtained
by Mints and Pukhov13 but only for a single-channel recombina-
tion of a radical pair (RP)sjust from its singlet state to the
ground state of the product. Unfortunately, the authors did not
present the evaluation of their results, and to generalize them
for the double-channel recombination, we have to derive
everything from the very beginning.

This goal will be reached with a method disclosed in the next
section.

II. General Formalism

The density matrix of the radical pair depending on the inter-
radical distancer and time t obeys the following evolution
equation15,16

with a reflective boundary condition at the contact of radicals
r ) σ

Here, L̂ is the operator diagonal in the Liouville space which
* To whom correspondence should be addressed. E-mail:

anatoly.burshtein@weizmann.ac.il.

Ω ) 1
2p

∆gâ0H (1.2)

∂F(r,t)
∂t

) L̂F(r,t) + L̂F(r,t) - Ŵ(r)F(r,t) (2.1)

ĵF(r,t)|r)σ ) 0 (2.2)
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describes the relative stochastic motion of the radicals, whileĵ
is a flux operator. As toL̂, this is the Liouville operator which
consists of the rates of the paramagnetic relaxation and the spin
transitions induced by the magnetic field. The rate operatorŴ(r)
represents the radical recombination depending on the distance
between the radicals,r. The recombination occurs from either
the singlet or triplet state of the radical ion pair (RIP) or from
both of them.

One can represent the Laplace transformation of the solution
of eq 2.1 as

whereF0 ) F(r,r0,0) andĜ0(r,r0,t) is the Green function obeying
the following equation

where Ê is an identity operator. It is convenient to represent
the operator Green function

via the scalar analogueφ(r,r0,t), which obeys the conventional
diffusional equation with evident initial and boundary conditions

The sole restriction of the present theory is the assumption
that the recombination takes place only at contact, that is, that
the rate operatorŴ(r) is

where Q̂ depends only on the rate constantskc
S and kc

T.
Substituting this expression into eq 2.3, we have

This is a closed expression for the contact density matrix,
F̃(σ,r0,s). Resolving it we obtain

This important result was obtained by Purtov and Doktorov14

and efficiently used in a recent investigation of the spin
conversion induced by the HFI mechanism.8

The quantum yields of the singlet and triplet products of
geminate recombination are defined through the components
of the matrix 2.9

In the Liouville space basis (FSS, FT0T0, RFST0, JFST0, FT-T-,
FT+T+), chosen by Mints and Pukhov,13 we have

whereT1 andT2 are the longitudinal and transversal times of
paramagnetic relaxation, while the mixing of the S and T0 states
occurs with a frequencyΩ from eq 1.2. The recombination
operatorQ̂ in the same basis takes the form

By finding Ĝ0(r,r0,t) from eqs 2.5 and 2.6 and substituting
its Laplace transformation into eq 2.9, one can solve this matrix
equation usingQ̂ from eq 2.13. The elements of the matrix
obtained determine not only the partial yields of the recombina-
tion products from eqs 2.10 and 2.11 but also the yield of the
separated radicals which escape recombination and become free

We usually represent all the yields as follows17,6

whereZs andZt are the efficiencies of recombination through
the singlet and triplet channels, respectively, while

is the total efficiency of geminate recombination.

III. Exact Solution of the Problem

In our previous article, we solved the double-channel problem
of geminate recombination assuming that the spin conversion

L̂ )

(- ( 1
2T1

+ 1
T2

) 1
T2

- 1
2T1

0 - 2Ω
1

2T1

1
2T1

1
T2

- 1
2T1

- ( 1
2T1

+ 1
T2

) 0 2Ω
1

2T1

1
2T1

0 0 - 1
T1

0 0 0

Ω - Ω 0 - 2
T2

0 0

1
2T1

1
2T1

0 0 - 1
T1

0

1
2T1

1
2T1

0 0 0 - 1
T1

)
(2.12)

Q̂ ) (kc
S 0 0 0 0 0

0 kc
T 0 0 0 0

0 0
kc

S + kc
T

2
0 0 0

0 0 0
kc

S + kc
T

2
0 0

0 0 0 0 kc
T 0

0 0 0 0 0 kc
T

) (2.13)

æ(r0) ) 1 - æs(r0) - æt(r0) (2.14)

æ ) D
D + Z

æt )
Zt

D + Z

æs )
Zs

D + Z
(2.15)

Z ) Zs + Zt

F̃(r,r0,s) ) G̃̂0(r,r0,s)F0 - ∫G̃̂0(r,r′,s)Ŵ(r′)F̃(r′,r0,s) d3r′
(2.3)

∂Ĝ0(r,r0,t)

∂t
) L̂Ĝ0(r,r0,t) + L̂Ĝ0(r,r0,t),

Ĝ0(r,r0,0) )
δ(r - r0)

4πr2
Ê (2.4)

Ĝ0(r,r0,t) ) eL̂ t
φ(r,r0,t) (2.5)

∂φ(r,r0,t)

∂t
) L̂φ(r,r0,t), φ(r,r0,0) )

δ(r - r0)

4πr2
,
∂φ

∂r |r)σ
) 0

(2.6)

Ŵ(r) ) Q̂
δ(r - σ)

4πσ2
(2.7)

F̃(r,r0,s) ) G̃̂0(r,r0,s)F0 - G̃̂0(r,σ,s)Q̂F̃(σ,r0,s) (2.8)

F̃(σ,r0,s) ) [Ê + G̃̂0(σ,σ,s)Q̂]-1G̃̂0(σ,r0,s)F0 (2.9)

æs(r0) ) kc
SF̃SS(σ,r0,0) (2.10)

æt(r0) ) kc
T[F̃T0T0

(σ,r0,0) + F̃T-T-
(σ,r0,0) + F̃T+T+

(σ,r0,0)]
(2.11)
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is incoherent which is the case atΩT2 , 1.18 This limitation
was obviated by Mints and Pukhov,13 who solved the problem
exactly (i.e., generally, for coherent spin conversion) but for a
single (singlet) recombination channel, whenZt ) 0 while Zs

) Z * 0. Here, we have to do the same but for the double-
channel recombination when bothZt andZs are not zero.

As the first step, one has to specify the exponent operator
e L̂ t in eq 2.5 that was found to be the following

where

In the particular caseT2 , T1 ) ∞, we haveB ) C( ) 0 and
the rank of the problem reduces to 4× 4 and becomes formally
identical to the case of spin conversion via the HFI mechanism
at the highest fields,19 provided the exchange splitting of the
singlet and triplet is negligible. For the particular case of
incoherent spin conversion, the same problem was solved
recently in refs 20 and 21.

Solving eq 2.6 and using the result in eq 2.5, we calculated
exactly the Laplace transformation of the Green operator

where

and

IV. Highly Polar Solvents

In solvents with a large dielectric constantε, one can neglect
the Coulombic interactions between the counterions, setting the

Onsager radiusrc ) 0. For this particular case,φ̃(σ,r0,s) is known
to be

so that the expressions in eq 3.3 become

wherekD ) 4πσD is the diffusional rate constant, whileτd )
σ2/D is the so-called encounter time.

Taking the integrals in eq 3.4, one finds that the results can
be expressed viaφ̃(σ,r0,s) given in eq 4.1. Using the latter, we
obtain for highly polar solvents

where

are the most important parameters responsible for the spin
conversion due to transversal relaxation (1/T2) and field-induced
coherent transitions with a frequencyΩ.

In the limit of the low field,Ω2T2
2 , 1, the expressions in

eq 4.4 reduce to the following

Most of the experimental works studying electron-transfer
reactions by optical and electrochemical methods are performed
in the natural magnetic field of the Earth which is rather low.
This is why this particular case is of exceptional importance.

V. Recombination only through the Singlet Channel

To illustrate the general theory, let us start from the simplest
example of the triplet RIP irreversibly created by electron
transfer from a triplet precursor.9-11 Such a triplet RIP has to
recombine through the singlet channel to the ground state
because recombination from this triplet state is prohibited,kc

T

) 0, that is

e L̂t )

(A+ A- 0 -sin(2Ωt)e-2t/T2 B B

A- A+ 0 sin(2Ωt)e-2t/T2 B B

0 0 e-t/T1 0 0 0
sin(2Ωt)

2
e-2t/T2 -

sin(2Ωt)
2

e-2t/T2 0 cos(2Ωt)e-2t/T2 0 0

B B 0 0 C+ C-

B B 0 0 C- C+

)
(3.1)

A( ) 1
4

+ 1
4

e-2t/T1 (
cos(2Ωt)

2
e-2t/T2

B ) 1
4

- 1
4

e-2t/T1

C( ) 1
4

+ 1
4

e-2t/T1 ( 1
2
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+
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-
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0 0 F
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-
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0 0 F

4
+

P2

4
-

P1

2
F
4

+
P2

4
+

P1

2

)
(3.2)

F ) φ̃(σ,r0,0)

Pn ) φ̃(σ,r0,n/T1) n ) 1, 2 (3.3)

Q1 ) 2∫0

∞
e-2t/T2 cos(2Ωt)φ(σ,r0,t) dt

Q2 ) 2∫0

∞
e-2t/T2 sin(2Ωt)φ(σ,r0,t) dt (3.4)

φ̃(σ,r0,s) ) 1
4πr0D

exp{-(r0 - σ)xs/D}

1 + σxs/D
(4.1)

F ) 1
4πr0D

Pn ) σ
r0

e(1-r0/σ)x(nτd/T1)

kD(1 + xnτd/T1)
n ) 1, 2 (4.2)

Q1 )

2σe(1-r0/σ)RR

kDr0

(1 + RR)cos[RI(r0/σ - 1)] - RI sin[RI(r0/σ - 1)]

(1 + RR)2 + RI
2

(4.3a)

Q2 )

2σe(1-r0/σ)RR

kDr0

(1 + RR)sin[RI(r0/σ - 1)] + RI cos[RI(r0/σ - 1)]

(1 + RR)2 + RI
2

(4.3b)

RR ) xτd

T2
xxΩ2T2

2 + 1 + 1

RI ) xτd

T2
xxΩ2T2

2 + 1 - 1 (4.4)

At Ω f 0

RR f x2τd

T2
) γ RI f 0 (4.5)

Zt ) 0, Z ≡ Zs (5.1)
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Cumbersome but straightforward calculations show that the
result depends on what spin level of a pair was initially
populated. If this is S, T0, or T(, then

where the corresponding recombination efficiencies are

where

are the contact values of the correspondingr0-dependent
quantities. For the particular case of contact start (r0 ) σ), all
these results are identical to those obtained earlier by Mints
and Pukhov.13

However, the most reasonable situation, presumed in the
majority of earlier works, is the start from the equilibrated triplet
state (T-pair) whose sublevels, T0, T+, T-, are equally populated
with the weights (1/3,1/3,1/3).

Summing the above efficiencies with these weights, we obtain
for this case

where

is the efficiency of a singlet recombination from the initially
equilibrated triplet indicated as T.

A. Recombination of a Contact Born Pair.At contact start,
r0 ) σ and therefore it follows from eqs 4.3 and 4.2 that

while RR andRI are defined in eq 4.4 and

1. Recombination of the S-Pair.Using the results in eq 5.3,
we obtain from there the recombination efficiency of the contact
born radical pair initially created in the singlet state (S-pair)

Such a complex result expressed viaqi(RR,RI) from eq 5.8 is
identical to that found by Mints and Pukhov.13 Fortunately, it
can be represented in a much more simple and transparent form
found in ref 20

where

is the only conversion-dependent parameter.
2. Recombination of the T-Pair. The same simplification

is presented here for the efficiency of the singlet recombination
from the equilibrated triplet state

In the limits of kinetic and diffusional recombination, it takes
the alternative forms

It must be noted that the general relationship betweenSæs

andTæs reported in section 3.2.1 of ref 7 holds true. The product
yields of the S-pair and T-pair recombination relate to each other
as follows

Sæs )
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D + SZs
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T(Zs

D + T(Zs

(5.2)

SZs

D
)

kc
S((4 + kc

Sq1)(F + P2 + Q1) + kc
Sq2Q2)

16 + kc
S((4 + kc

Sq1)(f - F + p2 - P2 + q1 - Q1) + 4q1 + kc
Sq2(q2 - Q2))

(5.3)

T0Zs

D
)

kc
S((4 + kc

Sq1)(F + P2 - Q1) - kc
Sq2Q2)

16 + kc
S((4 + kc

Sq1)(f - F + p2 - P2 + q1 + Q1) + 4q1 + kc
Sq2(q2 + Q2))

(5.4)

T(Zs

D )
kc

S(4 + kc
Sq1)(F - P2)

(4 + kc
Sq1)(4 + kc

S(f - F + p2 + P2 + q1)) + (kc
Sq2)

2
(5.5)

p2 ) P2(r0 ) σ)

qi ) Qi(r0 ) σ)

f ) F(r0 ) σ) ) 1/kD

Tæs ) 1
3

T0æs + 2
3

T(æs )
TZs

D + TZs

(5.6)

TZs

D
)

kc
S[(4 + kc

Sq1)(3F - P2 - Q1) - kc
Sq2Q2]

48 + kc
S[(4 + kc

Sq1)(3f - 3F + 3p2 + P2 + 3q1 + Q1) + 12q1 + kc
Sq2(3q2 + Q2)]

(5.7)

Q1 ) 2
kD

1 + RR

(1 + RR)2 + RI
2

) q1 (5.8a)

Q2 ) 2
kD

RI

(1 + RR)2 + RI
2

) q2 (5.8b)

P2 ) 1
kD(1 + â)

) p2 (5.8c)

â ) x2τd

T1
(5.9)

SZs

D
)

kc
S

16 + 4kc
Sq1

[4 + kc
Sq1

kD
(2 + â
1 + â

+ kDq1) + kc
Sq2

2] (5.10)

SZs

D
)

kc
S

2kD
[R + 2
R + 1

- â
2(â + 1)] (5.11)

R ) RR +
RI

2

1 + RR + kc
S/2kD

(5.12)

TZs/D )
kc

S

2kD

2R + â(1 + 3R)

2[3(1 + â)(1 + R) + (3 + 2â + R)
kc

S

kD
]

(5.13)

TZs/D ) { kc
S

2kD
[ R
3(1 + R)

+ â
6(1 + â)] at

kc
S

kD
, 1 kinetic

2R + â(1 + 3R)

4(3 + 2â + R)
at

kc
S

kD
. 1 kinetic

(5.14)

Sæs ) λ - 3(1 - λ)Tæs, whereλ )
kc

S

kD + kc
S

Contact Recombination of Radical Pairs J. Phys. Chem. A, Vol. 110, No. 10, 20063367



It is the straightforward consequence of the detailed balance
principle and can be easily verified here usingSæs from eq 5.2
andTæs from eq 5.6.

VI. Incoherent Spin-Conversion

In a rather low field (atΩT2 , 1)

Obviously that in such a case the conversion proceeds with the
rateΩ2T2 which is a parameter of the incoherent process. Using
the results of eq 6.1 in the formulas in eq 5.12, we obtain the
value ofR for the incoherent spin conversion

This parameter depends on recombination only through the ratio
kc

S/2kD, that is, small in the kinetic limit and large in the
diffusional one. Correspondingly, we obtain in these limits

These are exactly the same results that were found in appendix
B of ref 20.

In the case of a low field

depends on a single variable parameter, encounter diffusion,
changing with viscosity.

A. Rate Models. In a number of our and other works, the
spin conversion was presumed to be incoherent and was
considered from the beginning as a stochastic process occurring
with some rate,k0.6,9,12,22-25 In general, when the nonreacting
radical pair is immobile, its density matrix obeys the equation

following from eq 2.1

However, under the condition of incoherent conversion,ΩT2

, 1, the latter can be conventionally reduced to a set of four
master equations for only diagonal elements of the density
matrix, that is, populations of a singlet level,FS ≡ pS, and three
sublevels of the triplet state,F-, F0, andF+ (see Figure 1A)12,20

Here

is the rate of incoherent spin conversion in a stable radical pair
proceeding via a∆g mechanism.

1. Two-Level Model.For the extreme caseT1 ) ∞ (â ) 0),
only two levels out of four are involved in the spin conversion
and the set (eq 6.6) is reduced to the following

while F+(t) ) F+(0), F-(t) ) F-(0) and

The single-channel contact recombination assisted by the
incoherent spin conversion in the two-level system was the
subject of a separate exhaustive investigation in ref 20.

The comparison of the incoherent and coherent spin conver-
sion assisting a single-channel contact recombination in a two-
level system was continued in ref 21. It was confined only to
the RIP starting from contact (r0 ) σ) when all the results are
much simpler. If, in addition,â ) 0, then the recombination
efficiencies in eqs 5.11 and 5.13 gain the following form

Here, zs ) kc
S/4πσ is the usual constant of the conventional

(spinless) “exponential model”.12,6 Exactly the same result has
been obtained in ref 20 solving the rate equations for the two-

Figure 1. Scheme of spin transitions in the radical pair induced by
transversal and longitudinal relaxation as well as by a∆g mechanism
of incoherent spin conversion (A) and the elementary spin model of
the same at equal relaxation times (B).
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level problem, eq 6.8, except that

does not depend onkc
S at all, unlike its coherent analogue 6.2.

Moreover,R from eq 6.11 does not coincide with either of the
expressions in eq 6.3.

This is because the rate eqs 6.6 were obtained from their
coherent analogue, eq 6.5, when the motion of radicals was
switched off, together with the boundary conditions accounting
for the recombination. When the motion of radicals is accounted
for afterward, their recombination is affected by the spin
conversion but the recombination itself no longer affects the
spin conversion. This is a main weakness of rate theories first
reducing the coherent spin conversion to incoherent and only
then accounting for the encounter diffusion and recombination
of radicals. Here, in section III, we did quite the opposite: we
first solved the problem by simultaneously taking into account
the relative motion and conversion and only then turned to the
particular case (eq 6.1) where the latter is incoherent. Therefore,
our R for coherent spin conversion is given by eq 5.12 and for
the incoherent limit by eq 6.2, but the rate estimate (eq 6.11)
does not follow from either of them.20

However, there is an exceptional case of zero field (Ω ) 0)
when the transfer is carried out by only spin relaxation. This
stochastic process, incoherent by its nature, is executed with
the rateks ) 1/T2. Hence, the results (eq 6.10) withR ) γ are
exact for the zero field.

According to eq 6.4,γ increases with viscosity. On the other
hand, the ratioSZs/zs monotonically decreases with (1/D)1/2 from
1 to 1/2 (upper dashed line in Figure 2(A) At fast diffusion, the
spin conversion does not have time to affect the recombination
and SZs/zs ) 1. On the contrary, for small values ofD, the
equipartition between S and T0 is completed during the
encounter time, reducing the recombination efficiency by one-
half.

As for TZs, it is zero at fast and slow diffusion passing through
a maximum between (lower dashed line in Figure 2A). At fast
diffusion, it is zero because no transition from T0 to the reacting
S state occurs before separation of the radicals. On the contrary,
at slow diffusion, the encounter time is long enough for transfer
to be completed

After T0 is completely exhausted, the share of triplets that have
reacted is only1/3 of the initial triplet population. The remaining
2/3 that were in the other triplet states, T(, were not involved in
the reaction.

A similar picture develops when the system recombines only
through the triplet channel except thatSZ andTZ are interchanged
(dashed lines in Figure 2B). The former passes through a
maximum, while the latter monotonically decreases to another
value, 3/4, which needs a special explanation. In fact, the
efficiency of recombination from T0 reduces by one-half when
D f 0 while that from T( remainszt ) kc

T/4πσ at anyD value.
Therefore, eq 5.6 at slowD takes the following form

where

This is the very same limit forTZt as in the caseT1 ) T2

considered below and represented by solid lines in Figure 2.
2. Equal Spin Relaxation Times.If T1 is finite, then all four

states in eq 6.6 are involved in the reaction but the result (eq
5.11) first obtained for the incoherent spin conversion in ref 18
holds true provided that the parameterR is given by the
expression 6.11. For the particular case of equal times

whereT ) T1 ) T2

In this case, it follows from eq 5.11 that

Similarly, from eq 5.13, one gets

When the magnetic field is zero (k0 ) Ω ) 0), we obtain
from eqs 6.16 and 6.17

At very fast diffusion whenτd ) σ2/D f 0, the spin conversion
has no time to occur andγ ) 0. In this limit, SZs reaches its
maximal value,zs, which is the efficiency of the singlet
recombination in the absence of the spin conversion. As soon
as the spin conversion is switched on,SZs falls down with
decreasing diffusion and reaches the minimal valuezs/4 atD )
0. In this limit, all spin states are equally populated and the
share of the singlet one is1/4.

Although the diffusional dependence of the singlet recom-
bination from the equilibrated triplet state (the lower solid line
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in Figure 2A) is qualitatively the same as for the two-level
model, the result appearing in the slow diffusion limit is different

In contrast to eq 6.12, in this case, the whole triplet is completely
exhausted due to the longitudinal relaxation between its
sublevels (see Figure 1A) which is as fast as the transversal
one.

B. Elementary Spin Model (ESM).The simplest, but most
widely used and rather successful, rate model follows from the
set (eq 6.6) phenomenologically reduced to only two equations
at T1 ) T2 ) T. These equations relate to each other the
population of the singlet,mS ≡ FS, and the total population of
the triplet, mT ) F0 + F+ + F-. How these equations were
obtained one can see in section VIIIA of ref 12. For the case of
equal relaxation times, we have

with a microscopically defined spin conversion rate

As seen from Figure 1B, the conversion rate is 3ks for the
transition from singlet to triplet, while from any triplet substate
as well as from all of them this is onlyks. Due to the spin
conversion, the population of the singlet and triplet att . ks

-1

relate to each other as1/4:3/4, whatever was the initial state.
The elementary spin model (ESM) used in ref 17 enables us

to calculate the efficiency of singlet-channel recombination from
the singlet

Being very similar to the double-level expression forSZs in eq
6.10, it is distinguished by

The latter differs noticeably from eq 6.11 in the weight ofΩ2.
Although in this respect theR values from eqs 6.2 and 6.3 are
also different atΩ ) 0 all of them turn toγ.

VII. Double-Channel Recombination after Contact Start

Let us now turn to the most general case when recombination
is possible from either the singlet or triplet state of the pair.
The triplet products are excited triplet molecules whose yield
can be detected spectroscopically immediately after geminate
recombination. Both triplet and singlet yields depend on the
initial state of the pair given byF0. Using the correspondingF0

in eq 2.9 as well as the generalQ̂ from eq 2.13 andĜ0 from eq
3.2, with parameters from eq 5.8, we calculated from eqs 2.10
and 2.11 the yieldsæs(σ) andæt(σ). Only from them can one
obtain the recombination efficiencies defined in eq 2.15:Zs,
Zt, andZ ) Zs + Zt, which are discussed below.

A. Start from the Singlet State. If initially only the singlet
state is populated, then the efficiency of recombination through
the singlet channel is

and that for the triplet channel is

At kc
T ) 0, eq 7.1 reduces to eq 5.11 forSZs ) SZ, while SZt

becomes zero as in eq 5.1.
B. Start from the Individual Sublevels of the Triplet State.

If initially one populates only theT0 state, then the results are
different

Figure 2. Zero field recombination efficiencies for a single-channel
recombination through either singlet (A) or triplet (B) channels (zs and
zt were taken equal,z ) 2.63 × 10-4 cm2/s). Dashed and solid lines
relate to the casesT1 ) ∞ and T1 ) T2 ) 15 ps, respectively. The
upper curves in (A) and (B) are for the efficiencies of allowed
recombination from initially populated states, while the lower ones are
for the recombination initially forbidden but switched on by spin
conversion to the reacting state. The contact distance isσ ) 10 Å
everywhere.
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Equation 7.3 is the contact analogue of eq 5.4 for the double-
channel reaction, but it is greatly simplified in the same way as
eq 5.11 when compared to eq 5.10.

Subject to similar simplification and generalization, eq 5.5
takes the form

and its triplet analogue, which is not zero anymore (sincekc
T*

0), is equal to

The definition of the spin conversion parameterâ remains the
same as in eq 5.8c, while for eq 5.12,R should be substituted
for the more general one

valid for the double-channel recombination (kc
T* 0).

C. Start from the Equipopulated Triplet States. Having
all the efficiencies, one can calculate any yield including the
total yield of recombination from the equipopulated triplet states,
through either the singlet or triplet channels. Analogous to eq
5.6 we have

where

Using, in these formulas, the above obtained results, we get
for the efficiencies of the singlet and triplet channels in the case
under consideration

D. General Presentation of the Main Results.Later on we
will consider only the efficiencies of recombination from either
the singlet or equilibrated triplet state,SZ and TZ. They both
can be represented uniformly in a very compact form

where

E. Double-Channel Recombination in ESM.If the start was
made from the singlet, then the efficiencies of the different
channels in the ESM are the same as in the exact theory, eq
7.12a, but

where R is given in eq 6.23. Atzt ) 0, the double-channel
expression in eq 7.14 substituted to eq 7.12a reducesSZs to its
previously obtained single-channel analogue 6.22.17

The start made from the equilibrated triplet, treated the same
way, leads to another formula, an alternative to eq 7.13b

It is remarkable that the efficiencies at which the recombination
is switched on by the spin conversion,SZt andTZs, depend on
a single recombination parameter,zt or zs, respectively, while
two other efficiencies depend on both of them.

1. Recombination in a Zero Magnetic Field.In the case of
a zero field whenR ) γ, the results following from eqs 7.12
after substituting the expressions from eqs 7.14 and 7.15
coincide with those that can be deduced from the exact eqs 7.1,
and 7.2 and 7.10 and 7.11, respectively, provided

that is, T1 ) T2 ) T in addition toΩ ) 0. This is because
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under these conditions the set of eqs 6.6 rigorously reduces to
the ESM eqs 6.20 withks ) 1/2T.

Figure 3 shows the viscosity dependence of all the recom-
bination efficiencies at the contact start under condition 7.16.
Unlike Figure 2, where they have been shown for the opposite
cases of either the singlet channel (kc

S * 0 ) kc
T) or triplet

channel (kc
S ) 0 * kc

T) recombination, here we are dealing with
an intermediate case of “spin-independent recombination” first
considered in ref 26. This is an exceptional case when the
reactions from the singlet and triplet proceed with equal rates:
kc

S ) kc
T (zs ) zt ) z). Under such conditions, the spin

conversion does not modulate the recombination and cannot
affect its total efficiency

However,ZS andZT change with diffusion as shown in Figure
3. Under conditions 7.16 and 7.17, they obey the simple
formulas

All of them pass through an extremum at a common point

that is at

The vertical line at this point in Figure 3 separates the kinetic
control, D . z, from the regime of diffusion control,D , z
(left and right branches of the curves).

2. Kinetic/Diffisional Reactions of Radicals Started from
Contact. Far to the right, at the slowest diffusion, we obtain
from eqs 7.18

These formulae indicate that the rate constants 4πσSZt ) 3/4γkD

and 4πσTZs ) 1/4γkD are proportional to the diffusional constant
kD ) 4πσD, multiplied by the spin conversion factorγ )
xx/D. Therefore, they are proportional to (D)1/2. When the
radical pair starts from the singlet, the recombination constant
is three times larger than in the case of the triplet start.

This is a very interesting peculiarity of a spin-selective theory
compared to a spinless one. The latter may be diffusional only
in the case of a noncontact start,12,6 while the former is
subdivided into kinetic and diffusional regimes, even if the
radicals start to move being in contact. Immediately after the
start they become separated; the reaction is switched off and
the spin conversion is on. The recombination is now limited by
diffusion of radicals from where they find themselves to the
contact.

Its rate constant is diffusional when diffusion is slow and
the reaction is accomplished at the very first recontact but the
singlet and triplet products appear with the weights of these
states in the radical pair after spin conversion is accomplished:
1/4 and3/4.

Under kinetic control, the results are different

However, asD f ∞, the spin conversion rateγ f 0 andSZs )

Figure 3. Diffusional dependence of the efficiencies of the zero field
double-channel recombination at contact start and equal reaction
constants of both channels (zs ) zt ) z). Spin conversion efficiencyx
) 2σ2/T ) 5 × 10-4 cm2/s whereT ) T1 ) T2 ) 15 ps. (A) The start
from the singlet state of contact radical pair. (B) The start from the
equipopulated triplet states of the pair.
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γD ) z - TZs (7.19)

At
z
D

, 1 + γ

SZs ) 4 + γ
4(1 + γ)

z

SZt ) 3γ z
4(1 + γ)

) 3TZs

TZt ) 4 + 3γ
4(1 + γ)

z (7.20)
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TZt ) z while SZt ) TZs ) 0. The same result follows from eq
7.19 for the opposite diffusional limit,D f 0 (γ f ∞).

This means thatSZs andTZt vary with diffusion fromz to z
while SZt andTZs change from 0 to 0, but between the deviations
from thez and 0, horizontal lines are three times larger for the
singlet start (A) than for triplet (B). The maximal values of these
deviations reached atz ) D are

The efficiency of recombination from the singlet state through
the triplet channel is three times larger than the vice versa.

As for the spin conversion, it is either weak or strong
depending on whetherx ) 2σ2/T is less or greater thanz. If x
) 1/T ) 0 is zero, then the expressions in eq 7.21 also turn to
zero and recombination proceeds only from the initial states:
SZs ) TZt ) z. In the opposite case (x f ∞), these expressions
reach their maximal values which are3/4z for the singlet start
(A) and 1/4z for the triplet one (B).

VIII. Magnetic Field Effect

In the present theory, the frequency of spin conversion (eq
1.2) is proportional to the magnetic fieldH. Affecting conver-
sion, the magnetic field changes the free ion quantum yield,
averaged over the distribution of initial separations,f(r)

The quantitative measure of the magnetic field effect (MFE) is
conventionally defined as

As far as we know, until now, it has been studied experimentally
only with systems subjected to a single-channel recombination.
In particular, this was done in a wide range of fields with the
reaction of photoexcited Ru-trisbipyridine with methyl viologen
as an electron acceptor.27,28 This reaction starts from the
equilibrated triplet state of a pair that can recombine only
through a singlet channel after the field-dependent spin conver-
sion.

A. Singlet Recombination from the Triplet. In this par-
ticular case,Z ≡ TZs. It depends on the starting pointr0 if f(r)
) δ(r - r0)/4πr2. The partial recombination efficiency

is given by expression 5.7, which is too complex for analytic
investigations.

1. Contact Start.The situation becomes much simpler if we
first focus our attention on the pair starting from contact when

where the latter is given by expression 5.13 withâ andR defined
in eqs 5.9 and 5.12, respectively.

Low Fields. When the magnetic field is so small thatΩ2T2
2

, 1, then using the approximate expressions (eq 6.1) in eq 5.12,
we obtain in the lowest order approximation with respect to

Ω2T2
2

Under this condition, the MFE is linear inΩ2T2
2

where

The solution of the rate eqs 6.6 leads to a different result

becauseR has to be taken from eq 6.11

As can be seen at slow conversion,TMs is always linear in
Ω2T2

2, but the slope of this linearity in the exact formula (eq
8.6) varies from1/8 at γ , 1 up to3/8 at γ . 1, zs/2D, while in
the analogous rate relationship, eq 8.7, it is always larger,1/2.
Therefore, the parabolicΩ dependence of MFE at slow
conversion is much sharper in the approximate rate theory than
in the exact one.

This conclusion is also valid for the ESM, whereT1 is equal
to T2 andR is given by eq 6.23. The MFE estimated with ESM
obeys exactly the same quadratic dependence (eq 8.7) provided
one setsγ ) â in Φ(γ,â)

However, the region whereTMs is quadratic inΩ holds in such
a narrow strip (see Figure 4) that all the experimental points
are usually obtained out of it.

High Magnetic Fields. In high magnetic fields, the MFE
decreases with retardation approaching the constant negative
value

where

andΛ is also some function ofzs, â, andγ. It is useful to know

maxSZt ) z - SZs ) 3
4

z
xx/z

2 + xx/z
(7.21a)

maxTZs ) z - TZt ) 1
4

z
xx/z

2 + xx/z
(7.21b)

æj (H) ) ∫ æ(r,H)f(r) d3r ) 1
1 + Z(H)/D

(8.1)

M )
æj (H) - æj (0)

æj (0)
)

Z(0) - Z(H)

D + Z(H)
(8.2)

Z(H) ) TZs(Ω,r0) (8.3)

Z(H) ) TZs(Ω,σ) (8.4)

R ≈ γ[1 +
Ω2T2

2

8 (1 + 2γ
1 + γ + zs/2D)] (8.5)

TMs ≈ -Φ
Ω2T2

2

8 (1 + 2γ
1 + γ + zs/2D) (8.6)

Φ ) (zs/D) {γ(1 + â)2(1 + zs/D)}/

{[3(1 + γ)(1 + â) +
zs

D
(3 + 2â + γ)][2(1 + γ)(1 + â) +

zs

D (2 + 3
2

â + γ(1 + â/2))]}

TMs ≈ -Φ
Ω2T2

2

2
(8.7)

R ) xτd

T2
2(1 + Ω2T2

2) ≈ γ[1 +
Ω2T2

2

2 ] (8.8)

ΦESM ) Φ|γ)â )
zs

D

γ(1 + γ)(1 + zs/D)

3[1 + γ +
zs

D] [2(1 + γ)2 +
zs

D (2 + 5
2

γ + γ2/2)]

At Ω f ∞

TMs ≈ -Γ + Λ

xΩT2

(8.9)

Γ )
2zs(zs + D)(1 + â)2

[4(1 + â)D + zs(2 + â)][3(1 + â)(1 + γ)D + zs(3 + 2â + γ)]
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Γ which is actually an upper limit of the absolute value of
MFE: 0 e |TMs| e Γ. However, the asymptotic dependence
(eq 8.9) shown by the dotted line in Figure 4 is not achievable
because it holds at too high a magnetic field (ΩT2 . 1000),
while the experimentally studied interval is aroundΩT2 ∼ 1/2.

Moderate Magnetic Fields.Within this intermediate interval,
the descending branch of the solid curve should be better
interpolated with the following formula

With a proper choice ofê, ú, and Θ, this interpolation is as
good as that shown in Figure 4 by the dashed line. This is the
actual observed magnetic field dependence,27,28,10 while the
alternative (incoherent) parabolic dependence (eq 8.6) is hardly
detectable and is described by ESM only qualitatively.

In Figure 5, the nonmonotonic diffusional dependence of the
MFE is used to compare a few different approaches to the
problem. It was exhaustively studied in the frame of “a two-
state (S,T0)” model in ref 10, presuming that the system starts
from T0 havingâ ) 1/T1 ) 0. The solution to such a problem
at contact recombination and contact start can also be obtained
from our theory (dashed line in Figure 5). Nothing changes
significantly if we take into account all four spin states, setting
T1 ) T2 (lower solid line in Figure 5). But if the start under
these conditions is taken from the equilibrated triplet state (upper
solid line in Figure 5), then the difference is much more
pronounced. This means that the two-level model is too rough
for fitting the real experimental data and even more so its
incoherent analogue 6.8. On the other hand, it should be noted
that the results are rather insensitive to the particular value of
T1 in the whole interval∞ g T1 g T2, if the starting state is the
same.

2. Noncontact Start. It should be stressed that the results
are very sensitive to the starting point especially if it is close to
the contact. This peculiarity has been mentioned already in refs
4-6 and 17 where it was shown to result from the contact
description of the recombination. In this approximation, the
region of too low diffusion is not properly covered especially

when the initial particle separationr0 - σ is comparable or less
than the tunneling length. However, it is instructive to recognize
the general tendency of the MFE to change withr0.

As shown in Figure 6, the MFE monotonically decreases with
r0 at anyΩ and the sharper the larger it is.

However, the space-dependent recombination rateW(r) is not
actually the contact one, as in eq 2.7. Usually it is not narrower
than the tunneling lengthL ∼ 1 Å, that is, at so close starts, the
recombination is for sure not contact. If nevertheless the contact
approximation (eq 2.7) is used, then the diffusional dependence
of the MFE at the contact start is questionable at slow diffusion
(the lowest curve in Figure 7 atD < 10-6). However, the curves
for large separation are free of this weakness in the fast diffusion
region, where the effect is the most pronounced (Figure 7).

Very similar curves with clearly expressed minima were
obtained experimentally by Steiner et al.28 They were fitted in
ref 10 within the two-level model with an exponential (non-
contact) recombination rate. The calculations include the
averaging (eq 8.1) over the realistic distributionf(r0) which is
different for any D values. Unfortunately, all diffusional
dependencies were studied by the Steiner group varyingD
values (viscosity) by changing the solvent composition. This is
accompanied by a significant variation of the static and optical
dielectric constants changing the outer sphere reorganization
energyλ, parallel to diffusion. It was shown later that such a

Figure 4. Field dependence of the MFE at contact start in the exact
theory (solid line) and in the elementary spin model (dashed-dotted
parabolic line). The vertical line separates the low field (incoherent)
Ω dependence from the high field MFE, originating from the coherent
spin conversion. The latter is well interpolated by the empirical formula
8.10 with ê ) 0.91,ú ) 3, andΘ ) 1.8 shown as the dashed curve
approaching the exact result from above. The highest field asymptotic
behavior (eq 8.9) and its limit,-Γ, are shown by the dotted lines below.
The rates of contact recombination,zs, and other parameters are the
same as in the previous figure whileD ) 10-6 cm2/s.

Figure 5. Diffusional dependence of the MFE atT1 ) ∞ and start
from T0 (dashed line), forT1 ) T2 ) 15 ps, and the same start (T0), at
equal times but starting from the equilibrated triplet (T). The contact
rate constantkc

S ) 3.31× 105 Å3/ns, ΩT2 ) 0.75.

Figure 6. Field dependence of the single-channel MFE at different
starting distances. The rest of the parameters are the same as in Figure
4.

TMs ≈ -êΓ + Θ
ΩT2 + ú

(8.10)
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variation ofλ affects significantly the space-dependent transfer
rate and changes qualitatively the interpretation of the quantum
yield diffusional dependence.4-6 This is not the place to go into
the details of fitting the real diffusional dependencies. Instead,
it is better to concentrate on fitting the field dependence of the
MFE when nothing is changed exceptΩ.

3. Fitting the Field Dependence of the MFE.The expected
field dependence is exhibited in Figure 6. The different starting
distances,r0, represent the difference in diffusion. The faster
the latter is the closer to the contact the actual initial distribution,
f(r0), is. Instead of the whole distribution,f(r0), we take a single
r0, close to its average value, which shifts to contact when
diffusion becomes faster. However, not only the starting distance
changes withD but also T2 is subjected to some changes
indicated in the original experimental work (Table 1 in ref 28).
We used these values to fit the related curvesTMs using r0 as
a single variable parameter and borrowing the value forkc

S )
3.31 × 105 Å3/ns from ref 10 (see the caption to Figure 7
therein).

The results of our fitting are shown in Figure 8 and Table 1.
They cannot be expected to be better because the contact
approximation for recombination (eq 2.7) is employed instead
of the trueW(r) and the single starting distance is used instead
of f(r0).

The monotonic decreasing ofr0 with D confirms the nature
of the forward electron transfer (ionization) that should be
diffusional at such a smallD value. The effective radius of the
diffusional ionization is known to go down when the diffusion
accelerated.12,6Of course, the variation ofλ simultaneously with
diffusion can imitate the same effect as it did already in another
respect.4-6 Nonetheless, the spin conversion responsible for the
really observable MFE is an undoubtedly coherent process
contrary to what was expected in previous works.29,30

B. Double-Channel Recombination.When both reaction
channels are switched on, the yield of free radicals (eq 8.1) is
also field dependent, thoughZ(H) ) Zs + Zt depends on both
kc

S andkc
T. Until now, there was only one system whereZ and

Zt were measured simultaneously.17 However, the MFE was not
detected there. Besides, the spin conversion there was carried
out by another (HFI) mechanism that was considered separately.8

Therefore, we restrict our attention to only the contact start
using æ(σ,H) in eq 8.2 instead ofæj (H). This is only a
demonstration of the qualitatively different diffusional depen-
dence of the MFE, which is very sensitive to the interrelationship
betweenkc

S andkc
T at any starting state (Figure 9).

For triplet recombination through the singlet channel,TMs,
we have in (A) the lowest curve (kc

T ) 0) which is the same as
in Figures 7 and 5. An alternative recombination of the same
pair, via the triplet channel only,TMt, takes place atkc

S ) 0 and
has an opposite, positive sign of the MFE. A border case of the

Figure 7. Diffusional dependence of the single-channel MFE at
different starting pointsr0. All the parameters are the same as in Figure
4..

TABLE 1

D, cm2/s T2, ps r0, Å

6.67× 10-7 47.6 11.2
1.16× 10-6 40.8 10.8
2.30× 10-6 37 10.6

Figure 8. Fitting of the field dependence of MFE at various values of
the diffusion coefficient, increasing from top to bottom (Table 1). The
points are taken from experimental work.28

Figure 9. Diffusional dependence of the MFE for triplet (A) and singlet
(B) radical pairs, starting from contact. Single-channel recombination
is given by solid lines, double-channel recombination by dashed lines,
and the spin-independent border case by a dotted one. The relative
efficiencies of the singlet and triplet recombination channels are pointed
out by the relativekc

S andkc
T values.
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double channel but “spin-independent recombination” (kc
T )

kc
S) is a horizontal dotted lineTM ) 0. At comparable but not

equal rate constantskc
S ) 10kc

T andkc
T ) 10kc

S, the signs of the
effect are also the opposite as for the single-channel limits.

For recombination from the singlet initial state (B), the picture
is qualitatively the same, except that the signs of the MFE when
the singlet or triplet channel dominates are interchanged. Since
the initial state of the photoinduced pair is usually known, the
diffusional dependence of MFE allows one to find easily what
channel is more efficient and by how much.

IX. Conclusions

The yields of singlet and triplet products of the double-
channel recombination from either of these states and any initial
separation of radicals are exactly calculated assuming the spin
conversion is due to a∆g mechanism. The results for the
recombination through the singlet channel, only obtained
previously for the contact start from the singlet, are reproduced
and extended for the start from the equipopulated triplet states.
In the latter case, the MFE arising from the coherent spin
conversion is estimated and well fitted to the available experi-
mental data. The popular model considering the spin conversion
as an incoherent rate process is not appropriate in a high field
but becomes exact in a zero field, provided the spin relaxation
times are equal. In this particular case, the diffusional depen-
dence of all the yields coincides with the exact one and may be
used for discrimination between the channels.

The only limitation of the theory is the contact approximation
for distant recombination rates. It can be overcome by numerical
calculations provided that the distance dependence of the rate
is known.
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Two competing theories are used for bridging the gap between the nonadiabatic and the deeply adiabatic
electron transfer between symmetric parabolic wells. For the high friction limit, a simple analytic interpolation
is proposed as a reasonable alternative to them, well-fitted to the results of numerical simulations. It provides
a continuous description of the electron transfer rate in the whole range of variation of the nonadiabatic
coupling between the diabatic states. For lower friction, the original theories are used for the same goal. With
an increase in coupling, the cusped barrier transforms into the parabolic one. Correspondingly, the pre-exponent
of the Arrhenius transfer rate first increases with coupling, then levels off approaching the “dynamic solvent
effect” plateau but finally reduces reaching the limit of the adiabatic Kramers theory for the parabolic barrier.
These changes proceeding with a reduction in the particle separation affect significantly the spatial dependence
of the total transfer rate. When approaching the contact distance, the exact rate becomes smaller than in the
theory of dynamical solvent effects and much smaller than predicted by perturbation theory (golden rule),
conventionally used in photochemistry and electrochemistry.

I. Introduction

The electron transfer rate is a fundamental property used in
the theories of intramolecular and intermolecular reactions in
dense media.1-4 At high temperatures, the system motion is
adiabatic everywhere except at the crossing point of the
intersecting energy levels where the electron tunneling occurs.
For electron exchange reactions, the potential surface consists
of the two symmetric diabatic energy levels, which are com-
monly assumed to be parabolic (Figure 1). The free energy gap
for electron transfer in both directions is zero, and the transfer
rate is given by the conventional Arrhenius equation:

Here,U is the energetic height of the crossing point, 2V is the
nonadiabatic splitting of the energy levels 1 and 2 at this point,
λ is the reorganization energy of transfer, andkB ) 1.

The preexponential factor,k, depends on the nonadiabatic
coupling and the dynamic of motion along the reaction
coordinate. The evaluation of this factor constitutes a complex
problem that cannot be solved universally within a single theory.
A number of theories have to be used to cover the whole domain
of k(V,γ) whereγ is a friction along the reaction coordinate.
This two-dimensional domain was used in a few works5-7 to
indicate the results of different theories and their mutual borders
as shown in Figure 2, taken from ref 7. This figure establishes

all of the results and their regions of applicability but does not
provide bridging between them. Particularly, the variation of
the prefactork with the nonadiabatic couplingV at a fixed
dissipation strengthγ (in the vertical cross-section of the domain
from bottom to top) is due to the monotonic increase of the
coupling,

with reduction of the inter-reactant separation (up to their closest
approach atr ) σ). Passing this way at high friction, one starts
from the nonadiabatic perturbation theory subregion, where
transfer is limited by tunneling, crosses the intermediate
subregion of the dynamical solvent effect (DSE), but finishes
in the adiabatic subregion where the reaction is controlled by

W ) k e-(U-V)/T, U ) λ/4 (1.1)

Figure 1. Energetic scheme of resonant electron transfer.

V(r) ) V0e
-(r-σ)/L (1.2)
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diffusion to the crossing point. In each subregion, there are
expressions fork, which differ from one another. The depen-
dence of the preexponential factork[V(r)] is an essential part
of the spatial dependence ofW(r) given in eq 1.1. As an input
data used in the theories of intermolecular transfer,3,4 it has to
be continuous inr and not composed from a few pieces related
to different theories valid at different distances. The main goal
of the present work is to bridge these two pieces together to
get a single continuous formula for the requiredk(V) andW(r)
dependencies. It should be stressed that the urgent necessity to
match the Fermi Golden Rule and Kramers high friction theory,
including DSE, which separates them, was recognized long ago.
At first, it was realized in the well-known Calef and Wolynes
work8 and then by means of the Pollak “variational transition
state theory” (VTST).9-12 In what follows, we will rely upon
these two alternative approaches to the problem at hand.

Although the transfer is assisted by the system delivery to
the crossing point, at sufficiently smallV, it is limited
everywhere not by this motion but by slow tunneling with the
ratekPT. The latter is given by the Fermi Golden Rule (second-
order perturbation theory developed in ref 13; see also eqs 2.37
in ref 1 and 1.7 in ref 5):

However, at largerV, the tunneling ceases to control the
reaction giving way to either energy activation at low friction
(γ , ω) or free vibrations at moderate friction (with the well
frequencyω/2π). At even larger values of the friction, the
reaction is controlled by diffusion to the crossing point along
the reaction coordinate. The last phenomenon was discovered
independently in two simultaneously published papers, refs 14
and 15. The latter is addressed rather to the inner sphere low
frequency vibrations such as in H-bonded complexes in water,
studied later by pump-probe spectroscopy.16-19 The former
addressed more specifically the outer sphere electron transfer
in Debye polar solvents where

HereτL ) τD ε0/ε is the longitudinal relaxation time of dielectric
polarization related to the Debye relaxation timeτD, through
the ratio of the optical (ε0) and static (ε) dielectric constants.
Later on, the phenomenon of diffusional control in the reaction

space, which became known as the dynamical solvent effect,
was reproduced in a number of publications and observed
experimentally.20 However, with an increase inV, DSE gives
way to the well-known Kramers result for the parabolic barrier.
The latter is slightly different from DSE, which is actually its
analogue for the cusped barrier:

In the present work, we focus mainly on the large friction
(strong dissipation) region where the alternating formulaskPT,
kDSE, andkKram follow one another with increasingV. There is
also the more general expression derived by Zusman bridging
between the first two:

This is an exact solution of the sudden modulation equations
used in refs 5, 14, and 15. There, the transfer was considered
as nonadiabatic but weak where the perturbation theory holds
and strong where it gives way to DSE. Later on, the two
expressions (1.5) were also bridged by considering both of them
as adiabatic transfer (along a quasi-ballistic mode) over either
the cusped barrier or the parabolic one. The former transforms
to the latter with an increase of the level splitting 2V. This
matching resulting in the general expression for the diffusion-
assisted reactionkDAR was first made by Calef and Wolynes8

and later by Starobinets, Rips, and Pollak.11 These approxima-
tions will be considered in the next section, and the simple
interpolation formulas will be introduced for the large friction
limit. In section III, these formulas will be bridged with that
for perturbation theory for getting the finalk(V) and corre-
spondingW(r) dependencies. In section IV, we will do the same
but will account for the spatial dependence of the reorganization
energy peculiar for highly polar solvents. In the conclusions,
we will summarize all of the results and outline the remaining
problems.

It should be emphasized that in this paper we focus on high
temperature, high barrier electron exchange reactions in Debye
polar solvents. This implies that the reaction is thermally
activated with electron tunneling proceeding in the vicinity of
the crossing point of the diabatic potential surfaces. The solvent
modes can be treated classically (nuclear tunneling is negligible).
Furthermore, the effect of the high frequency quantum solvent
modes is neglected.

II. Diffusion-Assisted Reaction

The matching alternative adiabatic results (1.5) allows cover-
ing the whole domain of diffusion-assisted transfer. An impor-
tant generalization of this kind made by Calef and Wolynes8

results in the following equation for the pre-exponent:

where

Figure 2. Entire domain of theoretical definitions of electron transfer
pre-exponentk(V,γ) given in ref 7. The vertical dashed line corresponds
to the valueλ ) 40T used further on.

kPT ) V2

p x π
λT

(1.3)

γ ) ω2τL (1.4)

kDSE ) 1/τLx λ
16πT

for the cusped barrier (1.5a)

kKram =
1
τLx λ

8π2V
for the parabolic one (1.5b)

knon )
kPT kDSE

kPT + kDSE
) {kPT weak nonadiabatic

kDSE strong nonadiabatic
(1.6)

kCW ) ω
2π {x1 + J2

2πR
- J

x2πR} (2.1)

J(V,λ) ) eV/T ∫0

λ/2T
dyexp[ y2

λ/T
- xy2 + (V/T)2] (2.2)
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and the dimensionless dissipative parameter

In general, the theory of Calef and Wolynes is valid from the
intermediate (TST) to high friction (DSE) region (see Figure
2), so that

but it is the best for the highest available friction (atRf 0).
This is actually the case in which we are mainly interested.

In this particular case, the motion along the reaction
coordinate to the crossing point is diffusional but it delivers
the system to either a cusped or a quasi-parabolic barrier
depending on whether the level splitting at the point is small or
large, respectively. In the cusped barrier limit (Vf 0), the
expression (2.2) reduces to the following one:

AlthoughJ0 is real and positive, it is not equal to 1 at any finite
barrier heightλ/4, that is in generalk∞ * kDSE even atVf 0.
As seen from Figure 3,J0 approaches unity only asλf∞.
Otherwise

The latter result is the more precise Kramers formula for a
parabolic barrier. It differs slightly from its simplified version
(1.5b) obtained for 2V , λ. If V is not negligible (although
smaller thanλ/2 ) 2U), thenkPAR should be used instead of eq
1.5b. Unlike the latter, it is nonlinear in thexT/V coordinate
of Figure 4.

It is easy to interpolate between the opposite limits represented
in eq 2.6 to get a simple analytic alternative to the Calef and
Wolynesk∞ from eq 2.4:

This is the pre-exponent of the diffusion-assisted rate of electron

transfer over the barrier of arbitrary shape: from a cusped to a
parabolic one. As can be seen in Figure 4, this interpolation
not only approaches both these limits as expected but between
goes through four points numerically calculated in ref 11.

In the relatively low friction region, the better alternative to
the Calef and Wolynes approximation is provided by VTST,
which represents the pre-exponent in the following form:

and P ≡ P(R, V) has to be determined by solving the
optimization problem as described in ref 11. Making this
numerically, we found that the VTST curvek(V) is very close
to the four green points obtained for lower friction by numerical
simulations made in ref 11. There, the reactive flux method21

was employed for the integration of the Langevin equation of
motion using the velocity Verlet algorithm.22

The black points in Figure 4 were calculated forR ) 0.01,
that is forγ/ω ≈ 45 atλ/T ) 40. This friction is large enough
to be well-approximated by the Calef and Wolynes (CW)
expression fork∞. As for the green points, they were obtained
in the same way and for the sameλ/T but for R ) 1 whenγ/ω
≈ 4.5. Here, we are very close to the boundary of the high
friction region. As seen from Figure 2 in our case (λ/T ) 40),
this border is located atγ/ω ) xλ/4T ) x10, that is far to the
left from the cross-sectionγ/ω ) 45 to which we mainly
address. The green points for the modest friction are somewhat
better approximated by VTST than by the CW theory, while
the black points for the higher friction are equally well-
approximated by the original CW theory and our interpolation
(2.7). However, the latter will be solely used further on just
because of its relative simplicity.

III. General Interpolation

As a matter of fact, the cusp limit of either approximation
(2.6) or interpolation (2.7) is never achieved in reality because
at small V the limited stage of the transfer becomes not a

Figure 3. Correction factor for a cusped barrier rate,J0, as a function
of the reorganization energy.

R ) λ
2T(ωγ)2

(2.3)

kCW ) { ω
2π

) kTST γ/ω , xλ/4T (R . 2)

kDSE

J(V,λ)
) k∞ γ f ∞ (R f 0)

(2.4)

J(0, λ) ) - πi xλ/4T e-λ/4T erf(ixλ/4T) ) J0(λ) (2.5)

k∞ ) {kDSE/J0(λ) ) kCUSP V f 0

1
2πτL x λ

2V
- 1 ) kPAR

V f ∞ (2.6)

kDAR ) 1
τLx λ - 2V

8π(2TJ0
2 + πV)

) {kCUSP atV , T
kPAR atV . T

(2.7)

Figure 4. Pre-exponentk of diffusion-assisted electron transfer between
the limits of cusped (T/V . 1) and parabolic (T/V , 1) barriers. The
Kramers result for the latter is shown by the inclined dotted line while
the horizontal dotted and dashed-dotted lines represent the DSE results
for λ ) ∞ and λ ) 40T, respectively. All other curves are the
following: our interpolation (solid line), Calef and Wolynesk∞ for high
and moderate friction (dashed lines), and VTST theory for the latter
one (dash-dotted). The points represent the exact results obtained in
ref 11 by numerical simulations for large (R ) 0.01) and moderate
friction (R ) 1.0).

kVTST ) P
2πτL

x λ
2RT

(2.8)
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diffusion to the crossing point but an electron tunneling. This
means that the adiabatic theory should give way to the
perturbation one as DSE does in the Zusman formula (1.6).
Hence, to get the interpolation valid at anyV, we just have to
substitutekDSE in this formula forkDAR from eq 2.7:

At small V, this constant is equal tokPT, which is independent
of friction unlike the longitudinal relaxation timeτL, which
increases withγ. At given ω ) 1013, we obtain from the
definition (1.4):

Correspondingly, the height of the DSE plateau is higher the
smaller is the friction (see Figure 5), but this plateau is never
achieved byk(V), which lowers with increasingV approaching
the Kramers limit for the parabolic barrier. As a result,k is
never as high as its DSE value but the very existence of this
plateau as well as Kramers limit greatly reduces the actualk as
compared with PT. However, the real deviation from the letter
is not too large ifV e V0 , T, which is usually the case. For
instance,T/V0 calculated from the contact transfer rate obtained
in ref 23 is equal to 3.13. As seen from Figure 5 at this point
(in contact),k is only half of the perturbation theory value and
this difference reduces quickly with increasing intermolecular
distance. Only recently the system was encountered (perylene
+ TCNE) where the contact coupling is larger thanT, namely,
T/V0 ) 0.43.24 There instead of the perturbation theory rateWPT

the Zusman formula (1.6) was used to account for DSE.
However, at the highestV ) V0, even this correction is not
enough. As seen from Figure 5 at this point, the Kramers high
friction region is actually reached where the truek is twice
smaller than its DSE alternative, not speaking about a much
larger perturbation theory value.

To get an impression of what happens for lower friction, we
used the same approach substitutingkDSE in the Zusman formula
(1.6) by eitherkCW from eq 2.4 orkVTST from eq 2.8:

Both of these results are also shown in Figure 5. The discrepancy
between them is within the limits of accuracy of both ap-
proximations. The electron transfer rate increases with decreas-
ing friction due to acceleration of the motion along the reaction
coordinate. At a further decrease of friction, this motion becomes
ballistic, and the transfer rate reaches its upper limit established
by a plateauk ) kTST ) ω/2π. This plateau is not shown in
Figure 5 because it is too high. Furthermore, we are interested
in quite the opposite limit of the large friction available, where
our interpolation (2.7) is the best.

In general, the importance of the diffusion control of the
transfer increases with the increasing nonadiabatic coupling at
contact. This effect is very impressive, especially if considered
in real space. Using expression 1.2, we transformed into this
space (Figure 6) the result obtained for the large frictionγ/ω
) 45. It should be noted that in the vast majority of papers on
intermolecular electron transfer, only the perturbation theory
was so far used.3,4 This is reasonable if either the electron
coupling is much weaker than in the present example or the
closest approach distance is much larger (ω > 10 Å). In ref 24,
for the first time, these conditions were shown to be broken in
the system studied experimentally. There, only the use of the
Zusman eq 1.6 instead of the perturbation theory allowed us to
obtain a reasonable fit to the experimental data. However, Figure
6 shows that being better than perturbation theory, the Zusman
approximation still overestimates the transfer rate at short
distances where the barrier becomes parabolic. For attainment
of the highest reliability of the fitting, the use of the present
theory is essential. In the following section, we will see how it
changes the real rate of transferW(r) given by eq 1.1.

IV. Transfer Rate in Polar Solvents

The reorganization energy employed in the foregoing analysis
was considered as a distance-independent parameter. This is
true only for in nonpolar solvents where the inner sphere
contribution to the reorganization energy is the dominant one:
λ ≡ λin ) const. In highly polar solvents, the situation is the
opposite: the inner sphere contribution can be neglected as

Figure 5. Solid curves are our interpolation (3.1) between the weak
tunneling and the diffusion-assisted transfer. The former is given by
the perturbation theory (PT, dashed line) while the latter is given by
the Kramers and DSE approximation (dotted lines). The lowest solid
line is our interpolation at high friction (R ) 0.01,γ/ω ) 45) while
the upper dotted horizontal line over it represents the DSE approxima-
tion. Above them there are the similar lines for the lower friction (R )
1.0, γ/ω ) 4, 5). The bottom vertical lines indicate the lower limits
for the argument (3.13 and 0.43) accessible in two systems studied in
refs 23 and 24, respectively.

k )
kPT kDAR

kPT + kDAR
(3.1)

1
τL

) ωω
γ

)

{0.022ω ) 2.2× 1011 s-1 at γ/ω ) 45 (R ) 0.01)

0.22ω ) 2.2× 1012 s-1 at γ/ω ) 4.5 (R ) 1)
(3.2)

Figure 6. Pre-exponentk in different theories as a function of the
interparticle distance at large friction (γ/ω ) 45) andV0 ) 0.138 eV,
L ) 1.24 Å.

k )
kPT kCW

kPT + kCW
or k )

kPT kVTST

kPT + kVTST
(3.3)
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compared with the outer sphere reorganization energy, which
changes with distance between reactants according to the well-
known law:3,4

In acetonitrile, the contact reorganization energyλ0 ) 1.15 eV
and the average distance between contacting reactants isσ ) 5
Å, if these are perylene and tetracyanoethylene (TCNE) as in
ref 24.

Take into account that theλ(r) dependence makes the pre-
exponentk slightly larger in the adiabatic near contact region
but smaller at larger separations, where the transfer is nona-
diabatic (Figure 7). In parallel,λ(r) dependence is responsible
for the increase ofU(r) ) λ(r)/4 whose contact value isU(σ)
) λ0/4, while at infinite separation it is twice as large:U(∞) )
λ0/2. As a result, the transfer rate

decreases with distance not only due to the pre-exponent but to
increasing the activation energy as well.

Another important factor that affects the activation energy is
the nonadiabatic couplingV(r), which increases when approach-
ing contact. As a result, the contact Arrhenius factor is
significantly enhanced ifV0 > T, although it reduces sharply
with increasing the inter-reactant distance. This effect is
dominant at short distances whereV > T, while at larger
separation, the increase ofλ(r) contributes mainly to reduction
of the Arrhenius factor.

The same tendency manifests itself in the reduction ofW(r),
which is the product ofk(r) and ther-dependent Arrhenius factor
(Figure 7). The spatial dependence of the transfer rate is

significantly distorted, if the barrier reduction byV(r) or λ(r)
dependence is ignored. In such a case, the kinetic rate constant

can be also overestimated as well asV0 obtained by fitting the
theory to the experimental data. Fortunately, the dispersion of
reorganization energy is usually taken into account3,4 and the
lowering of the activation barrier was also accounted for when
necessary.25

The diffusional control of the tunneling so far was considered
only with the Zusman theory.24,25 Now, we can estimate what
is the difference between this and the present theory. In Figure
8, the presentW(r) is exhibited in the larger spatial interval
than in Figure 7 and compared with the Zusman rate and that
obtained using the Golden Rule (perturbation theory). Both our
and the Zusman theories, which account for the diffusional
control of the tunneling, and the rates of transfer atr < 10 Å
are systematically lower than predicted by the perturbation
theory. This difference ranges up to 3 orders of magnitude at
the closest approach distance. The difference between the
Zusman and our results is less pronounced but still runs as high
as 3÷ 4 times atr < 6 Å.

Special attention should be paid to the deviation of the true
W(r) dependence from its popular exponential approximation:

In the limited range of distances, this simplification leads to a
different and sometimes nonphysical value forW0 and l. In
particular, near the contact,l could be smaller thanL, but in
the medium larger than it and only asrf∞, the identityl ) L
is reached. Too large values ofl sometimes reported26-29 are
usually identified withL but associated with electron super-
exchange, which dominates the direct exchange of an electron.30

However, it also may be an indication of too strong coupling,
resulting in diffusional control of the transfer at short distances,
making the dependence of the rateW(r) on the distance less
pronounced and leading to a natural excess ofl over L. For
instance, the “local”l ) - 2 (d lnW/dr)-1 reaches in our case
1.67 Å (atr ) 8.4 Å) as compared to the true tunneling distance
L ) 1.24 Å (atrf∞).

V. Conclusions

On a particular example of the resonant electron transfer, we
have demonstrated that the Zusman account for the dynamical
solvent effect is insufficient for determination of the transfer

Figure 7. Pre-exponent, exponent, and their productW as functions
of interparticle distance with (solid lines) and without (dashed lines)
accounting for the space dependence of the reorganization energy.

λ(r) ) λ0(2 - σ/r) (4.1)

W(r) ) k(r) exp{- [λ(r)
4

- V(r)]/T} (4.2)

Figure 8. Space dependence of the transfer rates calculated with
perturbation and Zusman theories and present interpolation.

k0 ) ∫W(r)d3r

W(r) ) W0e
-(r-σ)/l (4.3)
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rate if electron coupling at contact is too strong. Zusman’s
expression was generalized using the original interpolation
between DSE and the adiabatic Kramers limit for high friction.
The same was done for moderate values of the friction using
two theories of diffusion-controlled electron transfer.8,11 The
present theory allows specifying the continuous distance
dependence of the transfer rate from the infinite reactant
separation and up to their closest approach where the maximal
electron coupling is reached.

Although our analysis is quantitative only for the resonant
transfer (with energy gap∆G ) 0), it is qualitatively valid in
the normal region (-∆G < λ) provided the transfer barrier

does not differ significantly fromλ/4. The situation changes
qualitatively only in the inverted Marcus region (-∆G > λ).
There, the dynamical solvent effect gives way to the sharp
adiabatic cutoff of the transfer rate when electron coupling
becomes too large. This situation was quantitatively described
in ref 31 by eqs 53 and 28, which constitute an analogue of our
eqs 3.1 or 3.3. A more complex situation arises at the boundary
between the normal and the inverted region (at-∆G ) λ),
where the electron transfer is activationless (U ≈ 0) and
nonexponential.32 The latter case deserves special consideration
as well as the phonon-assisted electron transfer in the inverted
region, which lowers the barriers, making one of the channels
activationless.3,4

As already mentioned, our treatment of the nuclear motion
of the solvent is classical, which is appropriate at high
temperatures. At lower temperatures, nuclear tunneling has
important physical effects on the electron transfer rate and
should be taken into account.33,34
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Abstract

A few theories of activated electron transfer in inverted Marcus region are used for bridging the non-adiabatic, solvent controlled and
deeply adiabatic transfer. The simple analytical interpolation between dynamic and stochastic theories provides a continuous description
of the electron transfer rate at any non-adiabatic coupling between the diabatic states. When coupling increases with shortening of inter-
particle distance the pre-exponent of the Arrhenius transfer rate first increases being quadratic in coupling, then levels off approaching
the ‘‘dynamic solvent effect’’ (DSE) region and finally is cut off exponentially due to adiabaticity of the transfer.

These changes affect significantly the spatial dependence of the transfer rate near the contact provided the coupling there is strong.
The rate tends to zero at contact distance being strongly suppressed nearby adiabatically. It is much smaller then the perturbation
(golden rule) and even DSE results. The latter is actually unattainable anywhere if contact tunneling is really strong. The transfer rate
is a bell-shaped curve adiabatic and non-adiabatic on the opposite sides and sensitive to the friction (DSE damping) only in between,
near the maximum.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Electron transfer; Inverted region; Transfer rate
1. Introduction

The electron transfer rate is a fundamental property
used in the theories of intra-molecular and inter-molecular
reactions in dense media [1–4]. For electron transfer reac-
tions the potential surface consists of the two diabatic
energy levels 1 and 2 which are commonly assumed to be
parabolic and even identical but shifted relative to one
another. Recently, we studied the resonant electron trans-
fer when the free energy of the reaction DG = 0 [5]. Here,
we turn to the opposite case when the transfer 1! 2 is irre-
versible and proceeds in Marcus inverted region (Fig. 1),
where the free energy is negative and large:

�DG > k� kBT ; ð1:1Þ
0301-0104/$ - see front matter � 2006 Elsevier B.V. All rights reserved.
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where k is the reorganization energy of electron transfer
and kB is the Boltzmann constant. This is for instance the
highly exergonic ionization turning the neutral reactants
to the pair of the counter-ions:

Dþ A! Dþ þ A�.

In general the distant dependent rate of electron transfer

W ¼ W 0e�U=T ð1:2Þ
is a product of exponential Arrhenius factor (from now on
kB = 1) and the pre-exponent W0 whose r-dependence is
very specific for different inter-reactant distances r. The
activation energy

U ¼ ðDGþ kÞ2
4k

ð1:3Þ

is also r-dependent through both DG(r) and k(r) [3,4].
The free energy contains the Coulomb contribution

which in case of electrostatic attraction between counter-
ions reduces its value:

mailto:cfbursh@wisemail.weizmann.ac.il


Fig. 1. The intersection of the parabolic diabatic energy levels in the
inverted Marcus region.
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DGðrÞ ¼ DG0 �
e2

�r
; ð1:4Þ

where D G0 = DG(1) and � is the static dielectric constant
of the solvent. The polar surrounding of the ions affects
also the reorganization energy making it distance
dependent:

kðrÞ ¼ ki þ k0ð2� r=rÞ; ð1:5Þ
where ki is the so-called inner-sphere reorganization energy
and

k0 ¼
1

�0

� 1

�

� �

e2

r

is the outer-sphere reorganization energy (of polar sur-
rounding with optical dielectric constant �0) at contact dis-
tance r. In highly polar solvents considered here the
Coulomb interaction is negligible, that is the free energy
is actually constant (DG(r) = DG0 = const.) and the reorga-
nization energy is large compared to the small inner-sphere
contribution neglected further on (ki = 0).

The r-dependence of W0(r) results mainly from the dis-
tance dependence on the non-adiabatic coupling which
increases exponentially with reduction of distance:

V ðrÞ ¼ V 0 e�
r�r

L ; ð1:6Þ
where L is the tunnelling length. The tunneling determines
the level splitting 2V at the crossing point of the diabatic
energy levels. The transfer is non-adiabatic at large dis-
tances where the splitting is small but becomes adiabatic
at contact if the coupling there is strong enough. In be-
tween it passes through the so-called dynamic solvent effect
(DSE), when the transfer is limited by diffusion along the
reaction coordinate to the crossing point [6,7]. Moreover,
Zusman proposed the formula that sewed together the per-
turbation theory and DSE [6]. The latter becomes the
upper limit of the transfer rate achieved at the largest
V � V0.
The DSE was obtained and studied a lot of times in the
intramolecular transfer and in the solid state [8–15]. How-
ever, it was common until recently to use mainly the pertur-
bation theory in the theories of electron transfer in liquids
presuming that V0 is small enough [3,4]. However, the pre-
cise fitting of transfer kinetics showed us that the true V0 is
as large that the DSE should be taken into account [16].
Now we think that this is not enough. We are going to
show here that even at more reliable, much smaller
V0 � 20 meV the transfer becomes adiabatically suppressed
at contact making DSE limit unattainable.

2. Pre-exponent dependence on distance

To cover the whole range of inter-particle distances one
has to use a number of theories valid at different coupling,
V, and the damping parameter c, which is actually a fric-
tion along the reaction coordinate. The relationship
between all these theories and their results was studied ear-
lier [17] and presented in two-dimensional domain (V, c).
The latter is reproduced in Fig. 2 in slightly different nota-
tions and used further on to reconstruct the space depen-
dence of W0(r) and W(r) at high collision frequency c.
However, the value of the latter should not exceed the bor-
ders shown by the double line in Fig. 2. Within these limits
the crossing region is passed by a single free pass. It is also
presumed that V� T. Under these conditions the velocity
of passing conserves during the crossing allowing the clas-
sical Landau–Zener formula to be employed [17].

It should be also noted that in Ref. [17] a bit different
presentation of the transfer rate (1.2) was used:

W ðrÞ ¼ ACTST ¼ A
x
2p

e�U=T ; ð2:1Þ

where CTST is the canonical expression of the transition
state theory (TST) rate through the linear frequency of
the free vibrations in parabolic potential well, x/2p. We
see from the comparison that

W 0ðrÞ ¼
x
2p

AðrÞ ð2:2Þ

has the same r-dependence as A(r).
In particular, within the second order perturbation the-

ory W0(r) has the commonly used form [3,4,17–21]:

W PT
0 ¼

V 2

�h

ffiffiffiffiffiffi

p
kT

r

¼ x
2p

APT; ð2:3Þ

where

APT ¼ 2
ffiffiffiffiffiffi

pD
p

and D ¼ p2V 4

�h2x2kT
¼ a2. ð2:4Þ

Parameter

a ¼
ffiffiffiffi

D
p
¼ pV 2

�hx
ffiffiffiffiffiffi

kT
p ð2:5Þ

is space dependent due to exponential decrease of coupling
(tunnelling) strength with inter-particle distance according
to Eq. (1.6). Parameter a chosen as an ordinate in Fig. 2



Fig. 2. Different theoretical results for A(a, c/x) dependence and the borders between them established in Ref. [17].
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grows when the distance between the reactants reduces.
Correspondingly the transfer rate as well as its pre-expo-
nent increase from the bottom to top in the vertical
cross-section of the plane (a, c) starting from the perturba-
tion theory which is essentially non-adiabatic. The latter
holds at high particle separation, within the borders indi-
cated in Fig. 2. Above them (at a > 1) the transfer becomes
adiabatic and sharply reduces with increasing of V(r) at
further reduction of inter-reactants distance.

An adiabatic alternative to the perturbation theory
result, (2.4), is given by the following formula [22]:

AAD ’ 3a1=3 e�2a2=3

. ð2:6Þ
Since at small interaction A increases but decreases at large
one there should be a maximum at a � 1. This is really the
fact following from the numerical calculation of thermally
averaged prefactor A for moderate (intermediate) friction
region [17]:
Fig. 3. The exact A(a) in moderate friction region in comparison with
perturbation theory (PT) and adiabatic (AD) limits.
AMF ¼ 2

Z 1

0

e�a=
ffiffi
�
p

1� e�a=
ffiffi
�
p� �

e�� d�;
T
U
<

c
x
<

U
T

.

ð2:7Þ
The results (2.3) and (2.6) for weak and strong inter-level
interaction follow from this general formula at a� 1 and
a� 1, respectively. The comparison of these limits with
the result of exact calculation of AMF(a) from Eq. (2.7)
are shown in Fig. 3. Taking into account Eq. (2.5) as well
as k(r) dependence from Eq. (1.5) and V(r) dependence
from Eq. (1.6) we obtain the space dependence of AMF

for highly polar solvents (Fig. 4) which demonstrates the
adiabatic suppression of electron transfer at short
distances.

The same effect is present at higher friction. However,
between the adiabatic and non-adiabatic regions there is
a peninsula where the famous dynamic solvent effect
(DSE) [6,7,23] takes place (Fig. 2). There A does not
Fig. 4. The space dependence, AMF(r), in highly polar solvent at
k0 = 1.15 eV, L = 1 Å, r = 7 Å, V0 = 0.02 eV.
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depend on the interaction in the crossing point, but is lim-
ited by a diffusion to this point along the reaction coordi-
nate. As was shown in Ref. [17]:

ADSE ¼
2x
c

ffiffiffiffiffiffiffiffiffiffiffi

pU eff

T

r

; where U eff ¼
U

1þ
ffiffiffiffiffiffiffiffiffiffiffiffi

U=U 0
p� �2

;

ð2:8Þ
where U is the activation energy for the transition 1! 2 as
before, while U 0 is the activation energy for the reverse
transition, 2! 1. In inverted region the latter is always
much larger than the former (see Fig. 1), so that Ueff � U.
In this case the weak r-dependence of ADSE comes from
only U(r) dependence, that is from DG(r) or k(r). As to c,
it is simply related in polar solvents to the longitudinal
relaxation time of dielectric polarization, sL: c = x2sL

[17]. Therefore one can easily get from Eqs. (2.8) and
(2.2) the following result:

W DSE
0 ¼ x2

c

ffiffiffiffiffiffiffiffi

U eff

pT

r

� 1

sL

ffiffiffiffiffiffi

U
pT

r

; ð2:9Þ

which is twice as much as the famous Zusman analog for
reversible DSE. The difference is objective because we con-
sider irreversible transfer (U 0 � U) while the resonant
transfer is reversible in principle (U 0 = U).

The exact expressions for the high and low coupling
obtained in Ref. [17] can be used for making a good inter-
polation between these limits which is valid approximately
at any a:

1

A
¼ 1

AMF

þ 1

ADSE

. ð2:10Þ

It follows from this formula that A = AMF at small and
large a while A = ADSE in between. At the highest friction
the latter is almost a plateau which cuts off the top of
AMF(a) dependence (Fig. 5). The same is true for
Fig. 5. The general A(a) dependence for moderate friction (1) and higher
c = 5 · 1013 s�1 (2); 2.5 · 1014 s�1 (3); 1015 s�1 (4) in highly polar solvent at
DG = 2.14 eV and x = 1013 s�1. The rest of the parameters are the same as
in previous figure.
W 0ðrÞ ¼ x
2pAðrÞ dependencies which are greatly reduced

near the contact comparing to perturbation theory valid
at large distances (Fig. 6). Of course, the finite r put an
upper limit to V making deep adiabatic region seen in
Fig. 5 unattainable if V0 is not sufficiently large.

The comparison of different theories over an unre-
stricted range of V(r) variation is given in Fig. 7 by example
of the high friction curve 4 from Figs. 5 and 6. The result
following from Eq. (2.10) is compared there with that of
perturbation theory as well as with Zusman-like formula
for irreversible electron transfer, accounting for DSE only:

W Zus ¼
x
2p

APTADSE

APT þ ADSE

¼ W PT
0

1þ W PT
0 =W DSE

0

. ð2:11Þ

As well as in the case of the resonant electron transfer,
studied recently in Ref. [5] (Fig. 6), Zusman approximation
Fig. 6. Distance dependence of W 0ðrÞ ¼ 2pA at the same parameters as in
previous figure.

Fig. 7. The lowest curve from Figs. 5 and 6 as a function of coupling, V,
compared to the perturbation theory result and Zusman approximation
for W0.



Fig. 8. (A) Distance dependence of the pre-exponent W0(r) and (B) the
total transfer rate W(r) in highly polar solvent (thick line). The thin line in
(B) is the bell-shaped approximation to W(r), (2.13), normalized to the
same maximal value of W, while the dashed line is the perturbation theory
estimate: W ðrÞ ¼ W PT

0 expð�U=T Þ.
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corrects essentially the perturbation theory but is not en-
ough to approximate well the exact behavior of the pre-
exponent W0, especially at large electron coupling (short
inter-particle distance) where the transfer becomes
adiabatic.

Now we are ready to turn back to the space dependence
of the total transfer rate (1.2) which is a product of W0 and
the Arrhenius factor which increases with distance due to
space dependence of U(r). It is this factor that shifts signif-
icantly the maximum of W(r) to larger distance than that of
W0(r) (Fig. 8). Such a bell shaped distance dependence of
the transfer rate makes very problematic not only the pop-
ular contact approximation (W(r) = k0d(r � r)) but even
the more reasonable exponential model,

W ðrÞ ¼ W c e�2r�r
l . ð2:12Þ

Much better approximation is provided by a model pro-
posed in Ref. [27]

W ðrÞ ¼ W m

ch2 r�R
K

� � . ð2:13Þ

Moreover, the latter allows the analytical solution of aux-
iliary diffusional equation of differential encounter theory
(DET). It provides the rate constant of bimolecular elec-
tron transfer in Marcus inverted region at any encounter
diffusion. Restricting discussion here to only kinetic limit
we have for the corresponding rate constant:

k0 ¼
Z 1

r
W ðrÞd3r. ð2:14Þ

Equalizing the results of k0 calculation with either exact or
bell shaped model of W(r) we obtain K = 1.19 Å instead of
L = 1 Å provided the maximal values are the same. As for
exponential model it provides qualitatively different W(r)
dependence but with the same k0 if L = 1 Å and
Wc = 10.7 ns�1. If for some reasons the contact rate, Wc,
is taken lower, then it appears that l > L [24]. This may
be a reason for often overestimation of the model tunnel-
ling length when fitting of bimolecular (forward) electron
transfer.

The exponential model of W(r) was shown to be inappli-
cable in the inverted Marcus case for not only forward
transfer but even more for the backward electron transfer
in geminate ion pair. It fails to explain the experimentally
observed non-monotonous viscosity dependence of the effi-
ciency of geminate ion recombination [25,26,4]. The latter
is originated by the ion start from inside of the bell shaped
recombination layer. In case of kinetic ionization they are
born at contact and move out through the recombination
zone. The faster they cross it the smaller is the recombina-
tion yield. This contrasts with outer start of ions generated
under diffusion control, whose recombination is facilitated
by diffusion [25,26,4].

3. Conclusions

The space dependence of electron transfer rate in deeply
inverted Marcus region was calculated taking into account
the adiabaticity of the process at strong coupling near the
contact. The result is qualitatively different from that
obtained earlier for resonant electron transfer [5]. The
transfer rate is non-monotonous, bell-shaped with a maxi-
mum shifted far from the contact. The best approximation
to it is a model given by Eq. (2.13), but neither contact nor
the exponential rate models.
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