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Abstract

The theories of photochemical ionization followed by geminate recombi-
nation and separation of ions are developed to give accurate explanation of
recent experimental findings. The Differential Encounter Theory (DET) is
applied to the analysis of ionization kinetics of Rhodamine 3B quenched by
N.N-dimethyleaniline in seven solvents with different viscosities. We found
that it was the neglect of non-stationary stage that used to lead to wrong
extraction of reaction radii and tunneling lengths in previous analyses of ex-
perimental data. The Unified Theory (UT) of photochemical charge separa-
tion is employed to fit the data obtained for photo-excited perylene quenched
by aromatic amines in dimethylsulfoxide-glycerol mixtures. An explanation
is found for the non-monotonous dependence of recombination efficiency on
the inter-ion diffusion. Fluorescence dynamics of perylene in the presence of
tetracyanoethylene in acetonitrile as well as the data on the recombination
dynamics of ion pairs generated upon electron transfer quenching in the same
system are analyzed and the explanation of unexpectedly low yield of survived
ions is proposed. The UT is extended to explicitly account for reaction coor-
dinate dynamics and for a proper description of the radical ions with different
spin states in arbitrary large external magnetic fields. The limits of applica-
bility of previously known incoherent models of spin conversion are specified.
Analyzing a number of experiments, it is shown that electron transfer, both
forward and backward, is essentially non-contact reaction. It’s proper descrip-
tion is possible only with distance dependent rates. The spatial dependence
of the transfer rate at arbitrary large electron coupling is studied for both

resonance and highly exergonic electron transfer.
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I. INTRODUCTION AND THEORETICAL BACKGROUND

Photochemical ionization and charge separation in liquid solutions is a promising way for
conservation and utilization of light energy. As ions are created by primary photo-excitation,
they may be separated by diffusion if they escape geminate recombination to either excited
or ground states of the reactants. To involve more free ions in the subsequent reactions of
photosynthesis or in electric current, one has to optimize the charge separation quantum
yield. This may be done by the proper choice of reactants and solutions.

One of the simplest bimolecular reactions in liquid solutions is the impurity quenching
of excited donor D* by charge transfer to electron acceptors A. The competition of the
excitation decay with the diffusion assisted electron transfer is represented by the following

reaction scheme:

D*+A— DY + A, (1)

b7

where 7 is the donor excited state lifetime in the absence of acceptors.

A. Differential Encounter Theory

In frames of the Differential Encounter Theory (DET), the energy dissipation is described
by the following equation for the excitation density:
N*

T

N* = —k(t) e N*(t) — (2)

Here N*(t) = [D*] is the survival probability of excitation and ¢ = [A] is the concentration
of quenchers. The latter is constant if the quenchers are in great excess. Immediately after
the d-pulse excitation there are 100% excitations, so that N*(0) = 1. The relative quantum

yield of fluorescence quenching is':

oo N (e, t)dt 1

= [ N*(0,t)dt 1+ ckT (3)

In the last expression, 7 is presented as the Stern-Volmer law. The quantity « is called the
Stern-Volmer constant. In reality, it is a constant only at small concentration of acceptors,
¢, while at larger concentration, k increases approaching the kinetic constant ky = k(0) at
c — oo (Ref.?).

The reaction constant k(t) is found from the following DET equations for the pair dis-

tribution function of the reactants n(r,t):



k(t) = /W(r)n(r, td*r, n = —W(r)n(r,t) + DAn, g:f =0, (4)

=0

where n(r,0) = 1. The input data are only the diffusion coefficient D, the contact radius
o and the transfer rate W (r) at the distance r between the reactants. The reaction always

starts with the maximal reaction rate constant
k(0) = ko = / W) dr . (5)

and then slows down gradually, approaching at t > Ré /D the stationary value, k = k(c0).

The latter can be expressed via the stationary reactant distribution, ng:
k = /W(r)ns(r)d3r = 4TRgD . (6)

The stationary equation for ng, which follows from Eq. (4), takes the form

D 0o ,0n
2or or’ (7)

and should be solved with the same boundary condition. The last equality in Eq. (6) is

Wne =

actually a definition of the effective reaction radius R that can be larger or smaller than
the contact radius o. The effective quenching radius is a liquid analog of the reaction cross-
section in gas phase kinetics. The specification of the diffusional dependence of Rg(D) is
the main achievement of DET. This dependence plays an important role in chemical kinetics
of liquid state reactions, the same role as the energy (velocity) dependence of the gas phase
reaction cross-section.

There are two regimes of a transfer reaction: kinetic and diffusional. The reaction is
kinetic if the main factor that controls it, is the magnitude of the kinetic constant. This
happens at small viscosity of the solvent (fast diffusion of the reactants). The opposite —
diffusional regime occurs if the solvent viscosity is large (slow diffusion of the reactants). In
other words, the reaction is in the kinetic regime if kg < kp, and in the diffusional regime if
ko > kp, where kp = 4moD — the so called diffusional constant.

The reaction constant k(t) is really a constant in the kinetic regime, that is k(t) ~ ko ~
k. The pair distribution function also changes little with time: n(r,t) ~ n(r,0). On the
contrary, the diffusional regime is characterized by a big temporal changes in both k(¢) and
n(r,t). We also have Ry < o in the kinetic regime, while in the diffusional regime, R
increases monotonously with the solvent viscosity?®.

Since the real shape of the transfer rate is rather complex a few simple approximations
were proposed to model them. For instance, the dipole-dipole energy transfer proceeds with
the rate

W(r) = ¢

r6’
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In the case of single-channel electron transfer (without excitation of reaction products) the

rate obtained with the perturbation theory by Marcus is given by the formula:®*
y2 2r— o)\ F (AG + A)?
W(r) = % exp (- Bt A" 8
(r) = % oxp ( L > ST P\ kT ) (®)

where Vj is the matrix element of the transfer, AG — its free energy, L is the tunneling

length, kp is the Boltzmann constant, and T is the temperature.
Here, it is assumed that the electron transfer assisted by the classical intra-molecular

mode and polar media requires the reorganization energy
)\(T) = >\z + )\0(7’), (9)

where \; = const is a contribution of an intra-molecular mode, while the second term, Ay(r),

accounts for the polar solvent reorganization. The latter is given by the well known formula:

2 1 1 1 1 2
Ao = — <—>(+—>, (10)
8meg \ €op € e Taq T

where €,, = 1/n? and € are the optical and static dielectric constants, and €, is the permit-

tivity of free space. ry4, and r, are the donor and acceptor radii, rq + 7, = 0.
In the normal Marcus region (AG < ) the rate (8) is often approximated with expo-

nential model:3
W(r) = Wee 2=/l (11)

or contact model applicable for atom or proton transfer:

ko

d(r—o). (12)

In contact approximation Egs. (4) reduce to the following form:®

k(t) = kon(o,t), n = DAn, 47t Dr? a—n

5 = ko n(o,t), (13)

r=o

which gives the well known Collins-Kimball formula for the reaction rate:

k(t) bk (1 + koe""”erfcﬁ) : (14)

" ko + kp ko

where x = (1 + ko/kp)?Dt/c? .
The transfer rate in the inverted Marcus region (when AG > \) has the form very
different from exponential. It can be approximated by the following bell-shaped function

which allows analytical solution of the Equation (4) (see Ref.%):
Wo

O o ()




B. Unified Theory of photochemical charge separation

The Unified Theory of photochemical charge separation!!-'2

gives the unified description
of both bimolecular ionization and geminate recombination reactions. The reaction scheme

is as follows: é
D + A— [DY...A7] — Dt + A~

l T i Wr
D... A
The first stage of the process is bimolecular ionization considered in the previous sub-
section. As the ions are born, they may either approach each other and recombine to the
ground state with the recombination rate Wg or be separated and go free to the solvent.
The quantum yield of the free ions is denoted as ¢ on the above scheme.
The time evolution of the distribution of radical ion pairs m(r,t) is described by the

following equation:

: * 10 - re/T 9 —re/T
m(r,t) = Wi(r)yn(r, t)N*(t) + EEDTQG e/ 5 "'m — Wr(r)m (15)

The first term on the right hand site of the equation is the source term of the ions created
by bimolecular ionization. The quantities Wy, n(r,t), and N(t) are defined in Egs. (2) and
(4). The second term is the diffusional motion of the ions with the diffusion coefficient D
which can be different from the diffusion coefficient of neutral reactants, D. r. is the Onsager
radius of the Coulomb attraction. The third term describes geminate recombination of ions
with the recombination rate Whg.

The initial and boundary conditions are:

0.

0
m(r,0) = m(oco,t) =0, Em(n t)

r=0

The total ion density P(t), and the free-ion quantum yield ¢ are defined respectively as:

P(t) = c/m(r, N, ¢ = P(co).

C. Spin multiplicity

It was recognized long ago that in the pairs of radicals or ion-radicals the recombination
is affected by spin conversion between initially populated and other spin states. The pair
of radicals created in either of its singlet or triplet states can recombine from there in the
singlet or triplet products or be separated with the quantum yield ¢, so the recombination

scheme becomes:



¢ DA MR A Dy A (16a)
T, | o 6
s D+A — 'D.A—D+A. (16b)
w

R

Here, ¢, and ¢, are the yields of the singlet and triplet recombination products respectively.
T;, is the transversal relaxation time assumed to be the same in both radicals and € is the
rate of transitions between the spin states. In case of Ag mechanism of spin conversion in

pairs of radicals having different ¢ factors, the 2 is given by:
1
Q = S AghH . (17)

Here (3 is the Bohr magneton, Ag = g, — g_ where g, and g_ are g-factors of radical ions
in a pair and H is the external magnetic field.

For a proper analisys of the photochemical transfer processes that include spin transi-
tions, the Eq. (15) is substituted by a system of similar equations, each for separate spin
component. If we collect all the spin components into a density matrix p of the radical pair,

the most general form of the system of UT equations will be:

ap(r,t . . 4 A
AL §(rst) + Lolr.t) + Lol t) ~ W(r)p(r.1) (13)
with a reflective boundary condition at the contact of radicals r = o
3o, t)]r=s = 0. (19)

Here, § is the sourse term of ions, L is the operator diagonal in the Liouville space which
describes the relative stochastic motion of the radicals, while j is a flux operator. As to ﬁ,
this is the Liouville operator which consists of the rates of the paramagnetic relaxation and
the spin transitions induced by the magnetic field. The rate operator W(r) represents the
radical recombination depending on distance between the radicals, r. The explicit form of

the operators depend on the particular model of spin transitions.

The yields are usually represented as follows:!415
D 7 Z
*=5+72° *“=B1z *"B+z (20)
D+ 7 D+Z D+2Z

where Z, and Z; are the efficiencies of recombination through singlet and triplet chan-
nels,respectively, while
Z=Zs+ 7,

is the total efficiency of geminate recombination.
The magnetic field effect (MFE) is the dependence of the quantum yield of free ions on
the external magnetic field H. It is defined as:
H) —
¢(0)



II. MAIN GOALS

Although the bases of both the Differential Encounter Theory (DET) and the Unified
Theory of photochemical charge separation (UT) had been established, the theories did not

get necessary experimental verification. There were two reasons for that:

e Old experimental equipment did not allow thorough study of forward and backward
electron transfer. Lack of devices for time resolved measurements impeded accurate
extraction of microscopic parameters of the reacting systems. This led to incorrect
interpretation of the results and even to paradoxes. One of the examples is the paradox
of unphysically large value of the tunneling length resulted form underestimation of
the non-stationary stage in the kinetics of fluorescence quenching.!%'” This paradox

has been resolved in our published work!?.

e DET and UT themselves were not developed enough to deal with real complex pho-
tochemically reacting systems. The transfer rate was modeled as either contact or
exponentially decaying with inter-particle distance. The dynamics along the reaction
coordinate was not incorporated into the theories. Spin conversion was described as a

stochastic process with a certain rate of transitions between the spin states.

Recent progress in experimental technology permitted more detailed study of electron
transfer reactions. Such techniques as single photon counting and fluorescence up-conversion
allowed the analysis of kinetic data in nano-second and even in sub-picosecond scales. Old
simplified approaches proved to be too rough to describe the newly obtained data.

The main goal of our recent works was the development of the encounter theories and
their implication for the fitting to real experimental data. Our research involved collabo-
ration with experimental groups from the USA (Prof. Fayer Group, Stanford University,
Switzerland (Vauthey Research Group, the University of Geneva) and Austria (ESR & Pho-
tochemistry Group, Graz University of Technology), and theoretical groups from Russia
(Prof. A. 1. Ivanov Group, Volgograd State University, Prof N. Lukzen, International To-
mography Center, Novosibirsk), and Israel (Prof. Ilya Rips, Holon Institute of Technology).

Together with Fayer group we applied DET to the analysis of ionization kinetics of
Rhodamine 3B quenched by N.N-dimethyleaniline in seven solvents with different viscosities.
Our work showed why previous analyses of experimental data with DET have yielded distance
dependences of electron transfer that are much too long range. We found that it was the
neglect of non-stationary stage that used to lead to wrong extraction of reaction radii and
tunneling length from the experiment.

In our joint works with ESR & Photochemistry Group from Graz University of Technology
(Austria) we used the UT to fit the data obtained for photo-excited perylene quenched by



aromatic amines in dimethylsulfoxide-glycerol mixtures. Our goal was the explanation of
the Angulo Effect'® — the non-monotonous dependence of recombination efficiency on the
inter-ion diffusion.

Our works with Vauthey Research Group, (the University of Geneva) were devoted to
the analysis of their data on the fluorescence dynamics of perylene in the presence of tetra-
cyanoethylene in acetonitrile as well as the data on the recombination dynamics of ion pairs
generated upon electron transfer quenching in the same system. Our goal was the explana-
tion of unexpectedly low yield of survived ions. Our work has called for detailed study of
the energetic scheme of the system and we had to extend the UT to explicitly account for
reaction coordinate dynamics.

The other goals of our research were:

e Further development of UT for a proper description of the radical ions with different
spin states in arbitrary large external magnetic fields. In particular, we wanted to spec-

ify the limits of applicability of previously known incoherent and rate theories?14:20724

e The determination of the spatial dependence of the transfer rate W (r) (see Eq.8) for
arbitrary large matrix element V' of the transfer, and for both normal and inverted

Marcus regions.

The results are discussed in the subsequent sections.



III. LUMINESCENCE QUENCHING BY ELECTRON TRANSFER
A. Transient effect

As far as we know, the first experimental inspection of the Rg(D) dependence launched
by a joint team of experimentalists and theoreticians was presented in Ref!¢. The fluorescence
quenching of pheophytina by toluquinone was studied in a number of different pure solvents
having viscosities that were either known or measured. The effective quenching radius was
found assuming that only steady state quenching could be detected experimentally. However,
the best fit of the theoretical dependence of Ry (D) to the data gave the unsatisfying results.
It gave the abnormally large value of the tunneling length, I = 5.44 — much larger than any
reasonable value that should be 1 to 2 4. Two other attempts were undertaken to correct
this result by changing the form of the transfer rate’s spatial dependence.®?® Only in the
last of them®, a reasonable reduction of | was obtained by assuming that W (r) has a bell
shape with its maximum shifted far from contact. This is possible, but only in the inverted
Marcus region. In the normal region, where the exponential approximation (11) works well,
the problem of physically unreasonably large tunnelling lengths remained unsolved.

In our work!'”, where we studied photoinduced intermolecular electron transfer between
Rhodamine 3B and N, N-dimethylaniline in a series of seven liquids, we solved the paradox.
We found that a systematic mistake was made when the quenching kinetics were considered
to be exponential, that is the rate of the decay is constant. However, in reality, this is never
the case.

Fig. 2 in the Ref.!” demonstrates the fit of non-stationary electron transfer kinetics to the
experimental data obtained in propylene glycol, the most viscous solution studied in Ref.!?.

The kinetics was fitted for a few different concentrations by the following formula:

—InP(t) = —InN/In N|_, = 4mcRoDt + 8cRyVr Dt (21)

t
which is actually [ k;(t')dt’ under diffusional control. This relationship allowed us to find
0

Rg, and the tunneling length L. Tt is easy to see from the Fig. 2 in the Ref.!'” that the
fitting, which accounts for the non-stationary quenching, is much better than the estimate
of the steady state rate from the tangent to kinetic curve as it used to be done in previous
works. Even at the end of the available interval, the data are steeper than the line, In P =
—cdm R Dt, the slope of which is the true stationary rate ck.

The fitting gave us reasonable value of the tunnelling length L = 1.65A, which does not
exceed earlier reports.?® In rigid structures, tunnelling over long distances was sometimes at-
tributed to the super-exchange, through molecular intermediates (like in molecular wires).?

However, in liquid solutions the inter-molecular electron transfer is expected to be shorter

10



than intra-molecular transfer. When the intermediates are mobile solvent molecules, the
coherence of transfer is broken, and super-exchange becomes ineffective.?8

In our work!”, we fit the non-Markovian quenching theory to nonstationary experimental
kinetics to find a single quenching radius R¢ for each of the solvents. For fast diffusion, the
viscosity dependence of R obeys the Collins-Kimball equation (see Eq (3.3)), permitting the
determination of the CK parameters: the kinetic rate constant kg and the phenomenological
reaction radius R. However, the CK model does not describe the Rg(D) dependence over the
full range of viscosities studied. The more general dependence obtained by means of DET
for exponential Wy (r) covers a much larger range of viscosity variation. From the fitting of
this dependence to the experimental one, more reasonable parameters of the exponential rate
and the tunnelling length [ = 0.85A are obtained. The latter can be easily related to the true
tunnelling length L of the Marcus formula for W;(r), which is not exactly exponential. The
true tunnelling length is found to be only twice as large as [ which is reliable and compatible
with others obtained earlier for intramolecular electron transfer. Thus, the theoretical results

f17

presented in Ref.’” resolve the problem of unphysical long-range tunnelling that came from

the analysis of an earlier experimental study of electron transfer in liquids.

B. Kinetics in the picosecond regime

The system studied in our previous article was recently subjected to a new investigation
by Fayer experimental group but with another technique and in a few new solvents?®. The
main difference was that instead of a single-photon counting used earlier, now the fluorescence
up-conversion was employed allowing more accurate study of the first 450 ps of the quenching
kinetics. Contrary to the previous investigation which was based on the long time asymptotic
behavior (up to 4 ns), now only the short time initial quenching was available for study but
with a much better accuracy and shorter excitation pulse.

First of all it made absolutely inapplicable the previously used methodology. Therefore,
in our next work®, we had to change our strategy: instead of the long time asymptotic
behavior (21) we turned our attention to the alternative, short time quenching. From the
initial quenching rate we extracted the kinetic constant (Fig. 1 in the Ref.3°) as a convolution

of the Marcus electron transfer rate and the equilibrium pair distribution of reactants:
= [Wirn(r 0@ —o [ Wilr)gr)d'r = k. (22)

From the best fit of the experimental data, the absolute value of the space dependent
Marcus rate was specified, as well as its contact value in solvents of different viscosity.
Employing the well defined Marcus rate, we fitted the whole kinetics of energy quenching

by electron transfer varying only the diffusion coefficient and tunneling length (Fig. 4 in

11



the Ref?). Comparing the results with the popular contact approximation®, we found it
inapplicable to the system under consideration (Fig. 8 in the Ref*®). On the contrary, the
encounter theory of remote electron transfer allowed not only to reproduce all the experi-
mental findings but also to predict the fluorescence yield concentration dependence, as well
as that of the Stern-Volmer constant.

Moreover, we found that k., as well as V was not a constant but increased with D being
inversely proportional to viscosity. This was a surprise. The electron coupling, Vj, is just a
static property of the contacting reactants that should not be affected by their motion. Such
a paradox could be qualitatively resolved only by taking into account the chemical anisotropy
of the reaction. This factor used to be ignored in the UT and IET of electron transfer®'* but
had exhaustively been studied earlier by means of DET though in contact approximation.'6
The averaging of the spherical anisotropy of the reaction by rotational diffusion, can explain
the increasing of the reaction rate in less viscous solvents where rotation is faster (Fig. 10

in the Ref*’). The same is true for the corresponding effective value of V.

12



IV. SPIN-LESS THEORY OF BIMOLECULAR IONIZATION FOLLOWED BY
HOT RECOMBINATION

A. Double channel highly exergonic ionization

In our work®! the fluorescence dynamics of perylene in the presence of tetracyanoethylene
(TCNE) in acetonitrile was studied experimentally and theoretically, taking into consider-
ation that the quenching is carried out by remote electron transfer in the Marcus inverted
region. It is well known that, TCNE allowed Rehm and Weller to get the most exergonic
points of their famous plot, though with other fluorophores.?® The quenching of perylene
also occurs deeply in the inverted Marcus region where |[AG;| > A. At so high exergonicity,
the distance dependent transfer rate passes through the maximum shifted out of contact?, so
that even in the kinetic limit the reaction is remote, not to mention the diffusion controlled
ionization.

We presented a successful fitting of the entire kinetics of fluorescence quenching which
starts from the initial accumulation of excitations during the action of the light pulse (Fig.
5 in the Ref.?!), extends to a kinetic electron transfer and ends by the final quasi-stationary
quenching (Fig. 8 in the Ref.3!).

We found that the simplest single-channel Marcus rate, as well as its multiphonon analogs,
do not allow fitting satisfactorily both the initial and the final stages of quenching (Fig. 7
in the Ref.3!). This can be done only if additional near contact quenching is added. The
origin of such an additional quenching may be attributed to parallel electron transfer to the
excited state of a cation radical as suggested in Ref.?3> For our analysis we had to extend
the Differential Encounter Theory (DET) to the reactions of competing channels of electron
transfer of different energetic and space extent.

We also accounted for saturation of the ionization rate at short distances, where the
tunnelling can be so fast that the limiting stage becomes the diffusional motion along the
reaction coordinate to the crossing point.343% In polar solvents this is the so called “dynamical

solvent effect” limited by the longitudinal relaxation of polarization.*® Taking into account

this effect the single channel rate takes the following form:37:38
U(r)  _aan? _(aG 2
W = — INT =W INT 23
1(r) 14 U(?")T6 0 ’ (23)

where

U(r) = VHOQ_;ZT exp (-2(7"5") ) | (24)

The upper limit of the rate, 77!, is different for activationless (AG; = 0)3* and highly
activated reactions (AG; > T)% but we used the interpolation, which was reasonable

between these two limits where most of our experimental data falled:’

13



1L /A (25)
T drp \ ©T
Here 7 is the longitudinal relaxation time of the solvent polarization which assists the
electron transfer.

Taking into account the saturation of the tunnelling due to the dynamical solvent effect
and having in hand an additional fitting parameter (the relative strength of the two channels),
we fitted satisfactorily the whole kinetics of quenching (Fig. 8 in the Ref.!).

Besides, the experimentally found concentration dependence of the Stern-Volmer constant
was well fitted with the same very parameters as the kinetic data. The contact approximation
applied to the same data was shown to be inadequate (Fig. 13 in the Ref.3!).

Our results are in conflict with what was found when Tachiya and Murata fitted the free
energy Rehm-Weller dependence of the Stern-Volmer constant that they identified with the
stationary rate constant k;.3° According to their Fig. 2 the transfer in the most exergonic
systems is kinetic, that is k; =~ ko (kinetic rate constant) at any time. Since our system is
one of those it should be expected that kg is much less than the diffusional rate constant,
which is not the case. Being free in choosing the fitting parameters the authors made their
conclusion assuming that the matrix element of the transfer Vy = 12.4meV . Making this
choice they greatly underestimate k, which is in their work 42 A3 /ps, that is almost an
order of magnitude smaller than our value, 322.6 A%/ps obtained experimentally. Found
k; = 31.6 < kg which clearly indicates that the ionization is very close to the diffusional
limit and rather far from the kinetic limit.

Thus, two important conclusions follow from this investigation:
e The energy quenching by TCNE in liquid solutions is controlled by diffusion.
e This is essentially distant, non-contact quenching.

These conclusions provide the unambiguous answer to the long standing question: why the
TCNE Stern-Volmer constant is placed on the diffusional plateau of the famous free energy
gap law of Rehm and Weller®3, instead of being far below it as was expected.

The true value of the TCNE Stern-Volmer constant is at least twice as large as obtained
in the contact approximation and this difference increases with concentration (Fig. 14 in
the Ref.3!). These facts show that the contact approximation is just a convenient method
of analytic calculations, but not a proper tool for fitting to the real experimental data on

transfer kinetics, especially under diffusion control and at high concentrations of quenchers.

14



B. Hot recombination and separation of RIPs

In our subsequent work*’, we consider the geminate recombination of ion pairs produced
by bimolecular photoinduced electron transfer (ionization) in the same system (Pe + TCNE).
The experiment gave us very surprising data on RIP kinetics and yield. The fraction of
survived ions was unusually small and this brought up a question, why ions recombine so
fast.

The study of the energetic scheme of this system (Fig. 1 in the Ref.*?) led us to a
possible explanation of this effect via so called “hot recombination” which proceeds before
thermalization. It can be responsible for such a small yield of free ions. Hot recombination
is possible when the ions moving along the RIP-surface meet the intersection with ground
state energetic surface of neutral products before they reach the bottom of the well. Because
hot recombination does not need any thermal activation it is more efficient and much faster
than the subsequent thermal recombination that conventional UT had been confined to.

Since the hot transitions cannot be discussed in terms of the rate constant, their ap-
propriate description has called for an extension of existing theories of electron transfer
quenching in solutions to explicitly account for reaction coordinate dynamics. In the theory
we present, both the chemical dynamics and the mutual spatial diffusion of the reactants
have been taken into account. It should be noted that the spatial motion of the reactants
was not considered in previous investigations of hot transitions.*! ¢ In particular, in Ref.*?
the average lifetime of the immobile ion pairs subjected to hot and thermal recombination
was calculated. On the contrary, we have considered the competition between both hot and
thermal recombination of the ion pairs and their diffusional separation.

With our theory we achieved a rather good fit of the RIP kinetics to the experimental
data in the 80 — 500 ps time window (Fig. 5 in the Ref.??). It was shown that, in the
present system, the vast majority of ion pairs have recombined through the hot channel
before they are equilibrated and start to recombine with the usual thermal rates. Almost
90% of the ion pairs recombine before equilibrium is reached and the subsequent thermal
recombination is accelerated by their encounter diffusion. As a result, no more than 6%
of their initial population are finally separated (at the acceptor concentration = 0.32 M).
Such a surprisingly fast back electron transfer proceeding through the hot channel was also
detected in Ru(IT) — Co(III) mixed-valence complexes in butyronitrile.*” In this case as
well, less than 50% of the ion pairs generated by the excitation of the metal-to-metal charge-
transfer band avoid this recombination and reach the equilibrium. These examples show
that the study of any system should start from the inspection of its energy scheme to find
out whether the hot transitions are possible in this system. If this is the case, one should
care not only for thermal but first of all for the hot transfer as a dominant factor in the

charge recombination.
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Second new element of present consideration is connected with the fact that ionization
and recombination of the Pe-TCNE donor acceptor pairs are considerably affected by a
quantum high frequency mode. In the presence of such a mode the hot transitions proceed
in a number of vibrational repetitions of the term crossings. It was shown a quantum mode
to vastly enhance the hot recombination efficiency. As a result only ion pairs born with large
inter-ion distances have a chance to avoid hot recombination.

This is, to our knowledge, the first successful fit of a backward electron transfer kinetics

taking into account the hot recombination of photo-generated ion pairs.

16



V. SPIN ASSISTED RIP RECOMBINATION

As it was recognized long ago in pairs of radicals or ion-radicals the recombination is
affected by spin conversion between initially populated and other spin states. Such a con-
version is carried out by the spin relaxation and/or some mechanisms acting in a magnetic
field. These are the Ag-mechanism of spin-conversion in pairs of radicals having different
g-factors and the mechanism of the hyperfine interaction (HFI) between the electron and

nuclear spins.

A. Incoherent HFI-mechanism of spin-conversion

In Ref.'® we studied the system where the spin-conversion is provided by HFI mechanism
which is common for organic radical pairs. We developed the contact theory of geminate
recombination to the ground and triplet states. It substitutes the inappropriate “exponential
model” of such a reaction and differs from it by splitting the spin-forbidden transition into
sequential spin-conversion and recombination stages. The efficiencies of contact geminate
recombination to either ground or excited triplet state of neutral products were calculated
for contact and remote starts of radical ion pair initially created in singlet state.

Considering the spin-conversion in this pair as a stochastic process with given rate, the
diffusional dependence of recombination and charge separation yields and corresponding
efficiencies were specified. The obtained diffusional dependence was compared with the
experimental data obtained for photo-excited perylene quenched by aromatic amines in
dimethylsulfoxide-glycerol mixtures, which allow for a wide variation of solvent viscosity
with composition without changing the other parameters.

Actually, the description of the spin-assisted recombination we used for the fitting was still
in a very simplified form. The spin-conversion was taken into account assuming stochastic
transitions between the different spin states of RIPs. The averaging of quantum yields over
the true initial distributions was also avoided. The unique starting distance r was assumed to
remain constant although the average one shifts closer to contact with increasing diffusion.®®
Moreover, even the contact approximation itself is too rough to deal with the closest starts
brought into narrow recombination layer (and leads to some unphysical results, which is
discussed in the paper). In view of all these simplifications, agreement between the theory
and experiment is surprisingly good indicating that the main features of the phenomenon
were nevertheless taken into account. It confirms that the spin-forbidden recombination is
composed of two sequential stages. Considering that the radical-ion pair is created in singlet

state, the spin conversion should precede its recombination to the excited triplet product.
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B. Account of remote nature of creation and recombination of radical-ions

In our subsequent paper®® we improved the fitting of the experimental data discussed
in previous subsection. First, we accounted for the initial space distribution of ions due to
distant photo-ionization. Second, we used distance dependent recombination rates instead
of simplified contact approximation.

Forward electron transfer proceeding with the space dependent ionization rate results in
some distribution of radical ion pairs over inter-ion distances which is farther from contact
the slower is the encounter diffusion of neutral reactants. The actual shape of the distribution
can be obtained with Differential Encounter Theory for any space dependence of the transfer
rate. 112

The charge separation quantum yield ¢ is then calculated as an average of partial yields
©(r) of ions born at the distance r and is therefore different from ¢(rg) for any fixed 7.
There is a similar difference between the yields of singlet and triplet neutral products,ps(ro)
and ¢.(ro), and their averaged values, ¢, and @;. The same is true for the corresponding
recombination efficiencies.

In particular, this means that the yield of photo-generated radical-ions is different from
that of the neutral radicals that are created at contact being the products of monomolecular
photo-dissociation.

Because the electron transfer either forward or backward is not contact, the ions are not
only born far from contact, but they also recombine distantly. Therefore the contact reaction
approximation widely used for heavy particles and proton transfer in liquids is too rough for
electron transfer. The shape and width of the remote transfer rates strongly affect the yields
of reaction products, changing essentially their diffusional dependence.

Using exponential reaction rates for both singlet and triplet channels we fitted the ex-
perimental data for recombination of ionized Perylene with aromatic amine counter-ions
(Fig. 10 in the Ref.*®). In particular, the diffusional deceleration of the recombination was
explained. This unexpected effect obtained by Dr. Angulo was first given a proper interpre-
tation in Ref.!® using the rectangular model of the recombination rate, or its Marcus analog
in the deeply inverted region. This effect was attributed to the escape from the extended
recombination layer when the start is taken from inside it.!®:51:52

Although the fitting was rather good there is still room for improvement. The exponential
models for the ionization and recombination rates should be substituted by the Marcus
formulae for these rates, which relate them to the true free energies of the reactions, as
well as to the reorganization energy in a particular solvent. The true hyperfine interaction
mechanism of spin-conversion should be substituted for the phenomenological rate model of
spin transitions in the RIP. The difference in size and encounter diffusion coefficients of ions

and their neutral precursors should be taken into account especially in polar solvents.
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Hopefully these improvements will enable the theory to correspond better with the fast
diffusion experiments and relate the spin-conversion rate to the true values of the hyperfine

interaction in particular radicals.

C. Incoherent Ag-mechanism of spin-conversion

In our next article** we turn to another conversion mechanism , assuming that it is
assisted by incoherent spin conversion executed by spin relaxation and the Ag mechanism.
We studied the recombination and separation of the radical pair from its singlet and triplet
state. The spin conversion in a pair was considered as a stochastic (incoherent) process,
assuming that the recombination of both singlet and triplet radical pairs is contact. The
quantum yields of recombination products and free radical production were calculated for
any initial separation of radicals in a pair.

We presented a general solution for the problem of singlet radical pair recombination at
contact through one or two parallel channels. It reproduces all the efficiencies of contact
recombination obtained earlier within the rate description of spin conversion as well as their
diffusional and field dependencies. It was shown that the exact and rate treatment of the
problem lead to the results which are identical in the lowest order approximation in the
magnetic field. Our general results, valid at any initial separation of radicals in a pair, 7,
can be averaged over the initial distribution of these distances f(ry) if it is known.

The main restriction of our results is the stochastic (rate) description of spin conversion
in a non-zero magnetic field. It is justified if spin relaxation in compexes is much faster than
the difference between their resonance frequencies. This condition is met in a number of

20,5354 wwhere Ty ~ T ~ 10 ps.

transition metal complexes with strong spin-orbital coupling
Quite the opposite is the situation with organic radicals whose spin relaxation is about a few
s while the frequency of the hyperfine interaction responsible for spin conversion is higher
than the relaxation rates. This is the coherent conversion that was widely studied®5%5414  as
well as the magnetic field effects resulting from it. However, to the best of our knowledge all
these studies were confined to single channel recombination. The problem of double-channel
recombination assisted by coherent HFI-mechanism of spin-conversion has been done in
Ref.%® Coherent conversion assisted by Ag-mechanism has been successfully solved in our

next work®® which is discussed in the next subsection.

D. Coherent Ag-mechanism of spin-conversion

In Ref.5° we continue the study of the contact recombination from both singlet and triplet

states of a radical pair, assuming that the spin conversion is carried out by the fast transversal
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relaxation and Ag-mechanism. Here we did not confine to small external magnetic field but
consider an arbitrary large field, allowing the spin conversion to be coherent. The alternative
HFI mechanism was neglected as being much weaker.

The magnetic field dependent quantum yields of the singlet and triplet recombination
products, as well as of the free radical production were calculated for any initial spin state
and arbitrary separation of radicals in a pair. The Magnetic Field Effect (MFE) was traced
and its diffusional (viscosity) dependence was specified.

The best analytical solution of this problem valid at any magnetic field was obtained by
Mints and Pukhov®?, but only for a single channel recombination of a radical pair (RP)-
just from its singlet state to the ground state of the product. Unfortunately the authors
did not present the evaluation of their results and to generalize them for the double-channel
recombination we have to derive everything from the very beginning.

The results were compared to previously known incoherent and rate theories (See
Ref 320:14:21724) wwhich can be viewed as particular cases of our more general theory (Fig.
4 in the Ref.’?). The main weakness of the rate theories is that they first reduce the co-
herent spin conversion to incoherent with the motion of radicals switched off, and only then
account for the encounter diffusion and recombination of radicals. When afterwards the
motion of radicals is accounted for, their recombination is affected by the spin conversion,
but the recombination itself no longer affects the spin conversion.

Instead, we did quite the opposite: we first solved the problem with simultaneously taking
into account the relative motion and conversion and only then turned to the particular
case where the latter is incoherent. In particular, we proved that the rate model of spin
conversion is not appropriate at any field. It becomes exact only in zero field, provided the
spin relaxation times are equal. In this particular case, the diffusional dependence of all the
yields coincides with the exact one and may be used for discrimination between the channels.

The only limitation of our theory is the contact approximation for distant recombination
rates. It can be overcome by numerical calculations provided that the distance dependence

of the rate is known.
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VI. SPACE DEPENDENCE OF THE TRANSFER RATE

The electron transfer rate is a fundamental property used in the theories of intra-

3,14,58,61

molecular and inter-molecular reactions in dense media. It is known to obey the

Arrhenius equation:

o (AG + \)?
W = k(V,) e W-V)/ksT U=~
where V' is the rate of resonant tunnelling and + is the friction along the reaction coordinate.
The main problem is the evaluation of the pre-exponential factor, k(V,v). It can not be
solved universally within a single theory. A number of theories have been proposed?®3:62 64,
Each of them describes k in a particular subregion of the two-dimensional domain (V,7),
separately for normal and inverted Marcus regions . In each subregion the expressions for &
differ from one another. However, the variation of V' (r) with interparticle distance can be
very large, changing from one subregion to another. This, requires that the bridges between
all these theories should be established and interpolating formulas for k(V,~) should be found
and used for the fitting of experimental data.

The r-dependence of V (r) is

T—0o

V(r)=Ve T ,

where L is the tunnelling length. The tunneling determines the level splitting 2V at the
crossing point of the diabatic energy levels. The transfer is non-adiabatic at large distances
where the splitting is small but becomes adiabatic at contact if the coupling there is strong
enough. In between it passes through the so called Dynamic Solvent Effect (DSE), when
the transfer is limited by diffusion along the reaction coordinate to the crossing point.%5:56
Zusman proposed the formula that sewed together the perturbation theory and DSE.% The
latter becomes the upper limit of the transfer rate achieved at the largest Max V' = V4.
The DSE was obtained and studied a lot of times in the intramolecular transfer and in
the solid state.5” ™ However, it was common until recently to use mainly the perturbation
theory in the theories of electron transfer in liquids presuming that Vj is small enough .34
However, the precise fitting of transfer kinetics showed us that the true V{ is rather large
(57 meV) and would have to take the DSE into account.?'*® Now we think that this isn’t

enough.

A. Normal Marcus region

In our work® two competing theories were used for bridging the gap between the non-
adiabatic and deeply adiabatic electron transfer between symmetric parabolic wells. For the

high friction limit a simple analytic interpolation was proposed as a reasonable alternative to
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them, well fitted to the results of numerical simulations. It provided a continuous description
of the electron transfer rate in the whole range of variation of the non-adiabatic coupling
between the diabatic states. With an increase in coupling the cusped barrier transforms
into the parabolic one. Correspondingly, the pre-exponent of the Arhenius transfer rate first
increases with coupling, then levels off approaching the “dynamic solvent effect” plateau but
finally reduces reaching the limit of the adiabatic Kramers theory for the parabolic barrier.
These changes proceeding with a reduction in the particle separation, affect significantly the
spatial dependence of the total transfer rate. If 1 is large then, as the exact rate approaches
the contact distance, it becomes smaller than in the theory of dynamical solvent effects and
much smaller than predicted by perturbation theory (golden rule), conventionally used in
photochemistry and electrochemistry.

The necessity to match the Fermi Golden Rule and Kramers high friction theory, including
DSE which separates them, was recognized long ago. At first it was realized by Zusman3¢,
then it appeared in the well known Calef and Wolynes work”™ and then by means of the Eli
Pollak’s “Variational Transition State Theory” (VTST).™® ™ We rely upon these approaches
to the problem at hand.

On a particular example of the resonant electron transfer, we have demonstrated that
the Zusman account for the dynamical solvent effect is insufficient for determination of
the transfer rate if electron coupling at contact is too strong. Zusman’s expression was
generalized using the original interpolation between DSE and the adiabatic Kramers limit
for high friction. The same was done for moderate values of the friction using two theories

of diffusion controlled electron transfer.”®"8

The model we proposed allows specifying the
continuous distance dependence of the transfer rate from the infinite reactant separation
and up to their closest approach where the maximal electron coupling is reached.

Although our analysis is quantitative only for the resonant transfer (with energy gap
AG = 0) it is qualitatively valid in the normal region (—AG < \) provided the transfer

barrier

 (AG+N)?
U= A\

does not differ significantly from \/4.

B. Inverted Marcus region

In Ref.%° the space dependence of electron transfer rate in deeply inverted Marcus region
was calculated taking into account the adiabaticity of the process at strong coupling near the
contact. The result is qualitatively similar from that obtained earlier for resonant electron
transfer.’® The transfer rate is non-monotonous, bell-shaped with a maximum shifted far

from the contact.
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Taking a few competing theories of activated electron transfer in inverted Marcus region®’

we bridged the non-adiabatic, solvent controlled and deeply adiabatic transfer. We proposed
a simple analytical interpolation between these theories which provides a continuous descrip-
tion of the electron transfer rate at any non-adiabatic coupling between the diabatic states.
When coupling increases with shortening of inter-particle distance the pre-exponent of the
Arrhenius transfer rate first increases being quadratic in coupling, then levels off approach-
ing the “dynamic solvent effect” (DSE) region and finally is cut off exponentially due to
adiabaticity of the transfer.

These changes affect significantly the spatial dependence of the transfer rate near the
contact provided the coupling there is strong. The rate reduces when the distance between
the reactants decreases being strongly suppressed adiabatically near the contact. It is much
smaller then the perturbation (golden rule) and even DSE results. The latter is actually
unattainable anywhere if contact tunneling is really strong. The transfer rate is a bell-
shaped curve adiabatic and non-adiabatic on the opposite sides and sensitive to the friction

(DSE damping) only in between, near the maximum.
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VII. CONCLUSIONS

As it follows from previous sections of this report, most of the problems announced in
my PhD proposal and interim report has been successfully solved. Some of these results
were presented at the Workshops on Diffusion Assisted Reactions in Graz University of
Technology (August, 2004), and in Novosibirsk Tomography Centre (August 2006), at the
Spin Chemistry Meeting 2005 in St. Johns College, Oxford, UK (September 2005), and at
the Israel Chemical Society meeting in Tel-Aviv (February 2006).

There are a few important conclusions:

e The kinetics of ionization quenching should be studied taking into account its non-
stationary nature even at long times. Neglecting the non-stationary stage leads to

overestimation of the effective reaction radius and tunneling length.

e The contact approximation of the reaction rate is just a convenient method of analytic
calculations, but not a proper tool for fitting the real experimental data on transfer
kinetics and quantum yields of its products, especially under diffusion control, at high

free energies of the transfer.

e The study of the recombination of radical-ion pairs should start from the inspection of
its energy scheme to find out whether the hot transitions are possible in this system. If
this is the case, one should care not only for thermal but first of all for the hot transfer

as a dominant factor in the charge recombination.

e The popular model that considers the spin conversion as an incoherent rate process is
exact only at zero magnetic field, provided the spin relaxation times are equal. This
model is not appropriate at high fields where coherent description of spin dynamics

should be used instead.

e The transfer rates employed in Encounter Theories should take into account the effects
of reaction coordinate dynamics especially when tunneling is so fast that the diffusional
motion along the reaction coordinate to the crossing point of the energy levels becomes

the limiting factor.

Currently we are working on fitting the new experimental data on kinetics of ioniza-
tion and recombination of photo-induced ions in the system studied earlier by us and Fayer
group!®17

spatial and reaction coordinates. This is going to yield more detailed description of photo-

. We are employing Encounter Theory that accounts for the motion along both

chemical transfer reactions in liquid solutions, and provide methods of accurate extraction

of basic physical quantities associated with the transfer processes.
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VIII. MY CONTRIBUTION TO EACH PAPER INCLUDED IN THE THESIS

1. Influence of diffusion on the kinetics of donor-acceptor electron transfer monitored
by the quenching of donor fluorescence, V. S. Gladkikh, A. I. Burshtein, H. L.
Tavernier, and M. D. Fayer, J. Phys. Chem. A 2002, 106, 6982

In this work I did the fitting of the non-Markovian quenching theory to non-
stationary energy quenching by electron transfer for 3 quencher concentrations
in 7 solvents. From these kinetic data I extracted the values of the reaction
radii Rg and the stationary reaction rate constants k;. Plotting the viscosity
dependence of the inverse rate constant 1/k; (Fig. 3 in this paper), I found the
value of the kinetic constant ky. I did analytical calculation for the parameter
for the exponential transfer rate, and numerical calculations for the Marcus rate.
Employing the obtained slope parameters I found the correspondence between

the effective tunneling length [ and the true tunneling length L.

2. Photoionization affected by chemical anisotropy, V. S. Gladkikh and A. I. Bur-
shtein, J. Chem. Phys. 2007, 126, 014506

My contribution to this work was the fitting of the Differential Encounter The-
ory to the experimental kinetics at small, moderate and long time intervals.
Analysing the initial stage of the quenching, I extracted from the experimental
data the values of the kinetic constants for all the solvents studied. I also stud-
ied the influence of the equilibrium radial distribution function on the quenching

kinetics, and rotational averaging of chemical anysotropy.

3. Kinetics and yields of electron transfer in the inverted region, V. S. Gladkikh, A.
I. Burshtein, Angulo, Stephane Pages, Bernard Lang, and Eric Vauthey, J. Phys.
Chem. A 2004, 108, 6667

In this article I did the fitting of the kinetic data at short, moderate and long
times with the single-channel, the double-channel, and the multi-phonon models.
Employing the energetic scheme of the reaction, I studied the contributions of
the transfers to different excited (per™)* + TCNE~ states to the overall kinetic
constant ky. I analyzed the concentration dependence of the relative quantum
yield of the fluorescence and the Stern-Volmer constant, using both stationary
and time-resolved experimental data. In case of the time-resolved data, I did
numerical integration to find the values of the yields. Fitting the data, I made a

comparison between the remote and the contact models of transfer.
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. Hot recombination of photogenerated ion pairs, V. S. Gladkikh, A. I. Burshtein,
S. V. Feskov, A. I. Ivanov, Eric Vauthey, J. Chem. Phys. 2005, 123, 244510

Here, I participated in fitting of both ionization and recombination kinetics. I
also studied the influence of the spatial dispersion of the diffusion coefficient and

dielectric permittivity on the ion-pair dynamics.

. Quantum yields of singlet and triplet recombination products of singlet radical
ion pairs, V. S. Gladkikh, A. I. Burshtein, G. Angulo, and G. Grampp, Phys.
Chem. Chem. Phys. 2003, 5, 2581

In this work I did the fitting of theoretical quantum yields and recombination
efficiencies to the experimental data. I also studied the behaviour of the yields

and the recombination efficiencies in the limit of slow diffusion.

. Production of free radicals and triplets from contact radical pairs and from pho-
tochemically generated radical-ions, V. S. Gladkikh, G. Angulo, A. I. Burshtein,
J. Phys. Chem. A 2007, 111, 3458

In this paper I studied the initial distributions of the radical ion pairs (RIP)
originated by photo-ionization. I made numerical calculations to obtain the de-
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I made a comparison of the recombination efficiencies for radical pairs generated
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. Double-channel recombination of the radical pairs via incoherent delta-g-
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2006, 323, 351
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differential equations (Eq. (2.1) in the article). I obtained analytic expressions for
the populations of the singlet and triplet states, quantum yields of recombination
to the ground state, and to the excited triplet state as well as the quantum yield
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formula for the magnetic field effects and the expressions for their small field
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Chem. A 2006, 110, 3364
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In this article I performed the exact analytical solution of the main equations
(Eq. (2.1) in the article). I obtained analytic expressions for the populations
of the singlet and triplet states, quantum yields of recombination to the ground
state, to the excited triplet state and the quantum yield of free ions as well as the
corresponding recombination efficiencies. I found that the efficiencies of recom-
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Influence of Diffusion on the Kinetics of Donor—Acceptor Electron Transfer Monitored by
the Quenching of Donor Fluorescence

V. S. Gladkikh,™ A. I. Burshtein, H. L. Tavernier,* and M. D. Fayer*+

Department of Chemical Physics, Weizmann Institute of Science, 76100dRdbkoael, and
Department of Chemistry, Stanford Warsity, Stanford, California 94305

Receied: March 14, 2002; In Final Form: May 8, 2002

The problem of photoinduced doneacceptor electron transfer in liquid solution is analyzed to obtain an
understanding of the relationship between approximate treatments of the role of diffusion in electron transfer,
that is, the Collins-Kimball approach, and a detailed analysis of the problem. It is shown why previous
analyses of experimental data have yielded distance dependences of electron transfer that are much too long
range. From an appropriate fitting of the nonstationary kinetics of donor fluorescence quenching by diffusion-
assisted electron transfer, the effective radii and the steady-state constants associated with electron transfer
are found for a doneracceptor system studied experimentally in seven solvents with different viscosities.
The dependence of diffusion agrees with the one predicted theoretically for electron transfer having a distance-
dependent transfer rate initially taken to be exponential with distance. In the fast-diffusion limit, the dependence
on the rate of diffusion is well approximated by the Coltriémball relationship, which permits the kinetic

rate constant and the effective radius associated with diffusion-induced quenching to be extracted from the
experimental data. The effective radius is then related to the electron transfer rate with arbitrary distance
dependence. From this relationship, the tunnelling length for both exponential and Marcus-type rates is obtained
from the data analysis, and it is demonstrated that the latter is almost twice as long as the former. For the
Marcus transfer rate, it is found that the Marcus paramgter1.2 A1 (8 = 2/tunnelling length), which is

in accord with previous measurements on a variety of systems. The theoretical analysis presented here resolves
the apparent discrepancies between early measurements of very long tunnelling lengths in liquid systems and
physically reasonable values ff~ 1 A1,

I. Introduction In the classical theory of bimolecular reactidrithe transfer
proceeds with a kinetic rate constdgtin a thin layer adjacent
to the contact sphere of radiusin this case, the effective radius
is related to the external radius of the reaction lalgegccording
to the Collins-Kimball (CK) relationship:

ko
* =R—
D'+A—D"+A" (1.1) R ko+ 47RD

It

One of the simplest bimolecular reactions in liquid solutions
is the impurity quenching of an excited donof By charge
transfer to electron acceptors A. The competition of the
excitation decay with the diffusion-assisted electron transfer is
represented by the following reaction scheme

(1.4)

Rq increases with viscosity but cannot excéedn the original
wherez is the donor excited-state lifetime in the absence of CK theory, the reaction layer was assumed to be infinitely thin;
acceptors. The energy dissipation is often described by con-thereforeR = o. This is actually a contact model of transfer
ventional (Markovian) chemical kinetics, represented by a single "€actions. Laterk came to be regarded as a fitting parameter,

equation for the excitation density = [D*] partially accounting for the remote nature of transfer, but only
forR— o< o.
N= —kcN 1.2) Evidently, both the contact and generalized CK models of

electron tunnelling are simplifications that are too rough to
wherec = [A] remains constant if acceptors are present in great describe real transfer that is governed by the distance-dependent
excess. Under this condition, the quenching proceeds exponentunnelling rate Wi(r). Much better, though not perfect, is an
tially with the time-independent raiek and the rate constant ~ exponential model of this dependence:

ki = 47R,D (1.3) Wi(r) = W, 2~ (1.5)

whereD = Dp + D4 is the coefficient of encounter diffusion

. A . i It is often assumed that the rate decreases exponentially with a
andRg is the effective radius of the reaction. b y

characteristic tunnelling length, It is possible to obtair in

- o some circumstances from experimental studies of intramolecular
* Corresponding author. E-mail: fayer@stanford.edu. 2 . .
t Weizmann Institute of Science. electron transfet# In the case of intermolecular transfer assisted
* Stanford University. by diffusion,| can be obtained only indirectly from experiments
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through the rate constants relatedW(r) by the theory of recently, electron transfer in the normal Marcus region was
distance-dependent electron transfer in liquid solution. studied again in another system and in seven different sol¥ents.
Early theoretical treatments, presented almost simultaneously,However, the quenching kinetics that were measured much more
were developed intuitivebybut were justified in terms of a  accurately were found to be nonstationary, that is, the evolution
binary approximation in ref 6. Not only the rate processes but of N(t) is not exponential; the rate depends on the time when it
also the dynamic transfer governed by the Hamiltonian were is measured. The preliminary analysis of these results showed
studied using the approach called encounter theory (). that| is overestimated if the experiments are analyzed in the
present, the method is better known as differential encounter same way as in ref 13. This overestimation stimulated the critical
theory (DET), which can be deduced, in some limits, from the analysis of the way in whiclRg should be extracted from the
more general integral encounter the®)ET permitted calcula- experimentally studied kinetics. Here, we prove that a systematic

tion of the Ro(D) dependence for the exponential fatend mistake is made when the quenching kinetics are considered to
proved that the CK model, witR ~ o, is valid in the fast- be exponential, even at the very end of the available time
diffusion limit.” However, for slower diffusion (higher vis- interval.

cosity), the steady-state constént= 47RD, whereRs > R. In our present study, we fit the non-Markovian quenching
The dependence on diffusion f& was given in a number of  theory to nonstationary experimental kinetics to find a single
papers’9:10 quenching radiuq for each of the solvents. For fast diffusion,

the viscosity dependence &g obeys the CollinsKimball
| yZW 12 equation (3.3), permitting the determination of the CK param-
RQ =R~o +§ In 4DC atR;> R (1.6) eters_: the k_inetic rate constakg and the phenomenologic_al
reaction radiuR. However, the CK model does not describe
) theRo(D) dependence over the full range of viscosities studied.
wherey = e>_<p(C) and C_ls the Euler constant. The more general dependence obtained by means of RET
The effective quenching radiuRg, is a liquid analogue of  exponentialWi(r) covers a much larger range of viscosity
the reaction cross section in gas-phase kinetics. The specification,ariation. From the fitting of this dependence to the experimental
of the dependence on the diffusion 8(D) is the main  one, more reasonable parameters of the exponential rate (1.5)
achievement of DET. This dependence plays an important role gnd the tunnelling length= 0.85 A are obtained. The latter
in chemical kinetics of liquid-state reactions, which is the same ¢an pe easily related to the true tunnelling lerigthf the Marcus
role as the energy (velocity) dependence of the gas-phaseformula for Wi(r), which is not exactly exponential. The true
reaction Cross Section. The gas-phase reaCtion Cross SeCtiOH |ﬁJnne"|ng |ength |S found to be 0n|y '[WICG as |arge|md
the subject of numerous theoretical studies and related Crossyives the Marcus parametgr= 1.2 A-1. This result is reliable
beam experiments. However, the variation of molecular veloci- and compatible with others obtained earlier for intramolecular
ties in the beams is more readily accomplished than is changingelectron transfet Thus, the theoretical results presented below
the mobility (diffusion) of particles in liquid solutions. Changing  resolve the problem of unphysical long-range tunnelling that

the diffusion can be done in a very limited range by varying came from the analysis of an earlier experimental study of
the solvents or their compositions or by using external pressure,g|ectron transfer in liquids.

which changes the viscosity of the solution. However, any of

these methods can affect not only diffusion but also other ||. Nonstationary Energy Quenching
properties of the media (solvation, polarity, refractive index,
etc.) Whenever the experimental difficulties were overcome,
new and very important results were obtairiéd?

As far as we know, the first experimental inspection of the
Ro(D) dependenddaunched by a joint team of experimentalists
and theoreticians was presented in ref 13. The fluorescence
quenching of pheophytin a by toluquinone was studied in a
number of different pure solvents having viscosities that were Ko
either known or measured. The diffusion coefficients obtained k() = ki(l +— exerfo/;() (2.1)
from the StokesEinstein relationship vary in the series of ko

solvents studied by 2 orders of magnitude. The effective . . .
y 9 wherekp = 47RDis the diffusional rate constant amd= (1 +

quenching radiusRq = ki/4nD, was found by assuming that > > X o o
only steady-state quenching could be detected experimentally.ko/k‘?) DUR®. As a resul@, the survival probability of excitation
vanishes nonexponentially:

However, the best fit of the theoretical dependencBD) to
the data gave the following unsatisfying resdft$d, = 1.8 x ¢
10 s1g = 4 A, andl = 5.4 A. The last number is much N(t) = exp(=c [ k(t) dt' — t/r) (2.2)
larger than any reasonable value for the tunnelling length, which

should be 1 to 2 A. Two other attempts were undertaken to  This effect is especially pronounced whikg> kp so that
correct this result by changing the form of the transfer rate’s the reaction is under diffusion control. The quenching always
spatial dependencdé&l® Only in the last attempt was a starts with the maximal reaction rate constigyeind then slows
reasonable reduction dfobtained by assuming thiti(r) has down gradually, approaching a much smaller diffusional value,
a bell shape with its maximum shifted far from contact. This Ko:

reduction is possible, but only in the inverted Marcus region.

It is remarkable that in the theory of contact reactions first
developed by Smoluchowskihe limitations of the Markovian
approach were removed from the very beginning. The “time-
dependent” rate constark(t), was substituted fok; in the
kinetic equation (1.2). In the CollirsKimball theory, ki(t) is
defined as follows:

In the normal region, where the exponential approximation Ko att=0
works well, the problem of unreasonably large physical tun- k() = k| 1+ att — oo (2.3)
nelling lengths remained unsolved. 7Dt

Unfortunately, until now no other attempts to resolve this
problem theoretically or experimentally were made. Only From Figure 1, which demonstrates the evolution of the
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Figure 1. Time dependence of the instantaneous rate conktéht
compared to its asymptotic (steady-state) vaddue the contact theory
of diffusion-assisted electron transfer. Two parameters of the theory,
ko and o, are taken to be the same as in Figure 3. The vertical dotted
line in the inset indicates the upper bound of the time interval, which

was available experimentally, where the instantaneous rate constant is

still almost 70% larger than the steady state value.

Collins—Kimball rate constant (2.1) in the full time domain, it

Gladkikh et al.

the steady-state rate of quenchimty, the rate constark, =
47RoD and the effective quenching radibg are overestimated.
This naive method of specifyinBg was a source of systematic
error that led to abnormally large values of the tunnelling
parameter that was obtained in ref 13.

At even higher viscosities, when the electron transfer is
already under diffusional control, a noticeable difference appears
between encounter theory and the primitive contact model of
Collins—Kimball. This difference is usually attributed to the
remote nature of electron transfer described by either the
rectangular model of\M(r) proposed by SzaB®or the expo-
nential approximation of\V(r) (eq 1.5)2728 However, the best
alternative to any model is the true Marcus-type rate of trans-
fer, which is a product of both the tunnelling and Arrhenius
factors?®

2(r — AG, + A)?
V\/l(r)=Vozex;{— (rL 0>)j%_ex ( T )) (2.5)

Here,Vj is the tunnelling matrix elemerit, is the true tunnelling
distance, and\G; is the free-energy change associated with

is easy to see that the CK rate constant is larger than the steadylectron transfer. The advantage of employing the true transfer

state constank;, at any finite time, and the difference is more
pronounced the earlier they are compared.

rate compared to using the CK model has been recognized in
ref 24, but an attempt to fit the nonstationary quenching kinetics

From work done in the Ia_st decade, there is growing evidence using eq 2.5 was launched by this group |&dnfortunately,
that fluorescence quenching by electron transfer is actually their choice of ethylene glycol as a more viscous solvent was

nonexponential® In this and other studié$ the non-Markovian
Collins—Kimball theory was used to fit the experimental
kinetics from very short times to long times. However, this

inappropriate for the reasons that were presented in ref 30 and
are confirmed here (see below). Other authors also appealed to
the Marcusw(r),28:31.32though in the vast majority of earlier

manner of extracting quenching parameters from nonstationaryworks, the exponential approximation of this dependence was
kinetics was deservedly criticized in ref 20 because there are ysed?:29.33.34

too many parameters to obtain reliable results. It should be added

that the electron transfer in the inverted region studied in ref
19 does not occur at contact at all, which makes the Cellins
Kimball theory inapplicable, at least at short times. Instead of
fitting all of the kinetics, the authors of ref 20 analyzed only
the long-time asymptotic behavior of the survival probability,
which is given by the well-known two term expressidn

In P = In[N expt/7)] = —c[47RDt+ 8R*V#Dt]  (2.4)

This expression accounts for the nonstationary diffusional

In the next section, we show how the effective radgan
be properly found from the nonstationary kinetics of electron
transfer causing fluorescence quenching. Then the diffusional
dependence of this radiuBg(D), will be used to specify the
main parameters of the CK model: the external radius of the
reaction zoneR, and the kinetic rate constark. The method
for the extraction oRg is similar to the one proposed in ref 20,
but its utilization here is different, and it is used to investigate
not only the CK model but also the results obtained for the
exponential transfer rate.

transfer for any free energy of reaction. Varying the solvent ||| Extraction and Fitting of Rg(D)
viscosity by changing the external pressure, the authors provided

an example of how to obtain the kinetic constégnfrom the
Collins—Kimball model of theRy(D) dependence. This constant

The long-time diffusional asymptote of quenching (eq 2.4)
is actually a universal kinetic law, provided that the effective

was found to be an order of magnitude smaller than that reportedradiusRg is substituted foR:

in ref 19.

The kinetics at the shortest times can be somewhat smoothed In P = —c[47R,Dt + 8R,*VxDt]

by excitation with a light pulse of finite duratio®:2>However,

att>Ry/D  (3.1)

the subsequent nonstationary quenching is not actually perturbedVhen the concentration of quenchers in solution and the

by excitation and is worthy of quantitative investigation. The

viscosity are known (as well aB, which is given by the

first term in eq 2.4 represents the steady-state quenching withStokes-Einstein relationshid = kgT/67ron), Rq is the only

a diffusional rate constant of#ZRD, whereas the second term
accounts for the initial nonstationary quenching, which is faster.

fitting parameter in eq 3.1. It is expected that for fast diffusion
Rq coincides with the CollinsKimball radius (eq 1.4) but that

Because of the second term, the long-time asymptote of this for slow diffusionR, becomes identical t& from eq 1.6.
process never becomes exponential in a strict sense. There is In Figure 2, we demonstrate hoRg can be obtained from

the pseudo-Markovian asymptotic expression
P(t) — Ae™*!

but the pre-exponent permanently decreases with tithes
exp(—8R%cvaDt). For this reason, one cannot obtain an
accurate estimate d§ by setting it equal to d IrP/dt at the
latest available time. If this derivativel(t) is identified with

the best fit of the two-term expression (eq 3.1) to the
experimentally measured P(t). P(t) = N(t) exp{/r) = N/N|c=o0

is obtained from the measured kinetics of energy dissipation,
N(t), which is related to the same kinetics in the absence of
acceptorsiN(t)|c—o. The initial discrepancy between these kinetic
parameters is natural and should be ignéfeéd8The convolution

of the excitation pulse with system response makes the top of
a signal smoother whereas the long-time asymptote (eq 3.1)
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Figure 3. Dependence of the steady-state rate constant on diffusion.

to the experimental data obtained in propylene glycol, the most viscous The points taken from Table 1 are interpolated by a thick line
solution studied in ref 17. The thin line represents the tangent to the representing the theoretical dependence for the exponential transfer rate
kinetic curve at the longest time within the available interval. The With | =0.85 A. The thin, straight line plots a contact approximation
dashed, straight line is the purely exponential decay, with the steady- With ko = 5.13 x 10* A¥ns ando = 6.87 A, whereas the dashed line
state rate constat = 47RgD obtained from the bed®q value.

represents the CollirKimball result withy = 0.91. The higher and
lower values of the rate constants related to the same system but with

TABLE 1 different concentrations are depicted here and in successive Figures
solvent  c(M) t(ns) D(A%n9 Ro(A) k(A¥ns by empty circles.
0.033 4.000 21991 steady-state rate constants
1 acetonitrile 0.067 1.45 438 4110 22622
0.100 4110 22622 k = 47R,D (3.2)
2 ethanol 0(')(_)02550 207 242 4'?{%?5 19’1328323 Some authofd:22 prefer to deal withk; instead ofRo. For a
0.075 4545 13823 fixed value ofD, it does not matter which of these is taken as
the primary fitting parameter. HoweveRg is a more funda-
3 eth glylethanol O&Eigo 201 453 7'%9800 393?585 mental property of the Fransfer. The relationshi_p of the value
0.150 7000 3985 of Rg to the contact distance and the tunneling length
0.050 7 470 3078 cgntains a gp_od deal of informatiqn abogt the transfer_mecha—
4 glycerolbutanol 0.100 2.60 328 6.402 og3g  Mism. In addition, there are analytlpal e§t|mateRQﬁor high
0.150 6.646 2739 viscosities, for example, the one given in eq 1.6. For all of the
systems studied here experimentally, the results for Bgttnd
0.050 6.597 2388 k are summarized in Table 1.
5 prgly/butanol 00'1%_.)%0 266 28.8 6 2'95797 232;:8 It is common and convenient to represent the CK equation
’ ' (eq 1.4) as a linear relationship between invérsend viscosity:
0.050 7.624 2702
6 glycerol/ethanol 0.100 2.34 28.2 7.624 2702 1 _ 1 i 1 3.3)
0.150 7.624 2702 k k| 47RD 3.
0.050 8.125 819
7 propylene glycol 0.100 2.80 8.0 7.500 754  This relationship is expected to hold, at least in the low-viscosity
150 7.375 741 region where the contact approximatidR £ o) is the most
0.050 10.067 1885 reasonable. There is no contradiction in the fact that at dmall
ethylene glycol  0.100 2.38 149  10.067 1885  some of our tabulated data deviate from the straight line (eq
0.150 10.067 1885 3.3). The data need only approach the lineDas> «. There,

extrapolated into this region is sharper than the (¢ The

time interval of fitting is also restricted from above by noise,

1/ — 1/ko, so the kinetic rate constant can be unambiguously
found from the intersection of the extrapolated straight line with

whose relative value increases with time. However, even in a the ordinate (Figure 3). For the system under stiglyas found
limited time interval, the fitting, which accounts for the in this way:
nonstationary quenching, is much better than the estimate of
the steady-state rate from the tangent to the kinetic curve. Even
at the end of the available interval, the data are steeper than the .

P G{N|th this value forky andR = o = 6.87 A taken from ref 17,

line In P = —c4nRgDt, the slope of which is the true stationar . . . . .
R P y we plotted the corresponding CK straight line, but its slope is

rate ck. , )
y somewhat too large to fit the experimental data well.

In ref 20, reliable values of botRg and D were obtained Toi t the CK radius is often taken to b
using an iterative nonlinear least-squares method with sophis- . 0 Improve agreemzeonzé,l € racius is often taken to be an
adjustable parameté?:2%

ticated optimization of the fitted function. The time-zero shift
parameter was also adjusted in the analysis. Knowrfgom
the separate measurements, we can do the same thing in a much

simpler manner by varying onligg and using the vertical shift By changingu, one changes the slope of the line representing
of the whole curve as an adjustable parameter. An example ofthe Collins—Kimball relationship. Selecting the proper value
such a fit is shown by the thick line in Figure 2. This procedure of x4 permits the experimental data at low viscosities (in the
was used to find reaction radii as well as the corresponding fast-diffusion limit) to be fit very well because the electron

k,=5.13x 10*A%ns (3.4)

R=olu (3.5)
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transfer in this limit is really a quasi-contact, provided the thin 17 — : : : —
reaction layer is included in the reaction sphere of raéius

0.28 The CK approximation works better the smaller the width
of the actual reaction layeR — o.

In the case of the exponential transfer rate (eq 1.5), this width
is approximately/,. More accurately, it can be determined if
the predictions of the CK model are compared with the exact
solution obtained by means of encounter theory. In fact, the
exponential transfer rate has the privilege of being one of the
few models ofW(r) that enables a rigorous solution of the DET
equations to be obtained. The solution results in the following
dependence on diffusion of the effective radiig:

S A I s I R I I I R R I B I B

Ro= 0+ oG + 2650 2 (39)

Figure 4. Distance dependence of the Marcus transfer rate (eq 2.5) in
the normal region4G; = —0.59 eV) withL = 1.65 A andl. = 1.3
Here eV (thick line) in comparison to its exponential approximations for
short (dotted line) and long (dashedotted line) distances.

Ko(2vX) — yv/XKy(2vx) W® o | _ _
o(x,y) = m~ D ship will be rederived for an arbitrary functional form of the
16(2v/%) + yv/xI,(2VX) transfer rate. Thenu(p) will be found not only for the
y = €~ 1.781 exponential rate but also for the Marcus rate of electron transfer.

From the analysis with the Marcus rate, the true tunnelling
whereC is the Euler constant and(x) andI(x) are modified distance in liquids emerges.

Bessel functions. By substituting eq 3.6 into eq 1.3, one can o
easily deduce that IV. CK Approximation for Remote Electron Transfer

20 Although we obtained rather good agreement between the
k = 4moD + 2ﬂID[In(y2ﬁm) + 20(ﬂm, I—)] 3.7) experiment and theory on the basis of the exponential transfer
rate model (eq 1.5), this is not firm evidence that the distance

where dependence is actually exponential. In the Marcus theory of
outer-sphere (solvent-assisted) electron transfer, the rate (eq 2.5)
Koo contains the Arrhenius factor that depends on the distance. In
Bm= 870D+ p+ 7712) p=llo highly polar solvents, the free energy of transfe®; ~ a

constant, but the reorganization enery) slowly increases

and with distance, approaching twice the contact valukg;?2

) Ar) =242 — olr 4.1
ko= [ Wi(n)dmr®dr = 22W,oAI(L + | o+ 1%120%)  (3.8) (1) = A2 — olr) 4.1)
i i i In the normal Marcus regiom\G; < Ac), this effect significantly
Because, ando are flxeq, t.here is only a single free parameter, reduces the Arrhenius factor near the contact, though at large
|, that can be used for fitting. o stances thie factor approachte a conetant. AS 5 1ot
In the data presented in Figure 3 (as well as in Figures 6 and can be approximated by exponential functions, but near contact

7), there are a few points in which somewhat different rate and far from it, they have different decrements. The former
constants were obtained for the three concentrations studied 2/ is larger then the latter (R), which is expressed through

In such cases, we have plotted all of them with the higher and the true tunnelling length:
lower values depicted by empty circles. Almost all points fall

on the theoretical curve (thick line) representing the exact We -9 strag
solution (eq 3.7) with\; fixed by the known kinetic constant W=4{ °¢ 2 - o)L (4.2)
and the tunnelling length found from the best fit, W.e atr>o
| =0.85A (3.9) Here, we have

Only a single point for ethylene glycol marked by the crossed VOZ\/; (AG;, + /1(-)2
circle is too low, but this system was recognized as exceptional W, = exg — :
by experimentalists themselves. The reasons that it is so different \/fl' 4T
were discussgd in a separate artfél€or the same reasons, V()z\/; r{ (AG + 2/192
we excluded it from our fitting as well. = exd — '

The exact result for exponentiw¥|(r) was reduced in ref 7 ” N2AT 81T
to the standard CK relationship witR = o (« = 1), which
appears in the zero-order approximation with respeqi. tf In Figure 4, the functions given in (eq 4.2) are compared with
the higher-order corrections were included, ther 1 would the true nonexponential Marcus rate in the normal regiog; (
be obtained. With the true value pf the CK straight line fits = —0.59 eV,A. = 1.3 eV). As was expected, the Marcus rate

the data in the fast-diffusion region almost as well as the exact near the contact decreases much faster than does its exponential
curve (see Figure 3) does. To specify the slope of this line asymptote at large distance. The long-distance asymptote
theoretically, we have to find the genegdl) dependence by  contains the true tunnelling parametemwhich is almost twice
means of DET. Therefore, in the next section, the CK relation- as large as thévalue used above to obtain the best fit to the
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experimental results. A more accurate relationship between expJr)[1 — exprJdr)] ,

andL will be established below. - atr =<
Moreover, the effective width of the reaction layer can be Gy(r, 1, 0)= ¢ (4.12)

attributed to a nonexponential transfer rate provided that the expfJr) — 1 .

CK reaction constant’s dependence on diffusion (eq 3.3) can 4r D atr > r

be approximately identified with that derived by DET for
arbitraryW(r). The derivation starts with the general definition

. re = g¥ekgT is the Onsager radius.
of the steady-state constant in DET: o = fcke 9

For neutral reactantgj(= 0) or highly polar solventse(>
3 1), one can take; = 0 andg(r) = 1. Inserting the simplified
k= fV\/l(r)nS(r) dr = 47R,D (4.3) Green function into the general equation (4.11) reduces eq 4.11

This expression relatds to the arbitrary rate of transfer and to

the steady-state pair distribution of reactants 1 o )
() =1 - 5./, Wi(ro) ndro) rodro -

n(r) = lim n(r, t) = lim sA(r, 9) (4.4)
t—o0 s—0 1 00

. o Bﬁ W(rg) ny(ro) rodry (4.13)

wherefi(r, s) = fe Sn(r, t) dt. The nonstationary distribution

n(r, 1) is the solution of the diffusion equation: The first integral in this expression describes the large distance

N an asymptote, whereas the second integral determines the contact
n=—-W(rn+Ln pr n(r,0)=g(r) (4.5) reduction of the particle density:
Here, L is the diffusion operator for nonreacting particles, and ki Ro
g(r) = e Y0 is the initial equilibrium distribution for a pair of n) ={> " ZaDr 1-— atr—e

reactants. The distribution is not homogeneous if there are

electrostatic or other interactions, which are represented by the 1-o/D atr=o

Bt%rp%rtlcle potentiall(r), but for U = 0, we havelL = o = fEWi(ro) n(ro) ro dro. The asymptote at largeis very
—zgrzg andg = 1. general and is well-establishedvhereas the contact reduction
r

depends on the model of the transfer ruigr) and is more
pronounced the slower the diffusion.
However, we need to use the whole distributian) in the
_ 3 calculation of the steady-state rate constant (eq 4.3). Near the
n(r, 9 = fG(r, o, 1) 9ro) Ao (4.6) kinetic limit, n(r) can be readily obtained from eq 4.13. For
that has a Laplace transform that obeys the known integral fast diffusion, both corre_ctions to 1_ (the_first term_) in eq 4._13
equatioRs are small anc_i can be estimated by iteration. The first one gives
us the following:

The general solution of eq 4.5 can be expressed through its
Green function

G(r, 1y, 9) = Gy(r, 1y, 9 —

~ B _ 171 o
[Gor W) & 1o 9 B (47)  N=1- ﬁlgﬁy\’\’n(y) ydy+ W)y dy]
Here, Go(r, ro, t) is the Green function for diffusive motion fork < 4moD (4.14)

without reaction, which obeys the much simpler differential . . .
4 P x =", andW(x) = Wi(r)c®. Substituting this approximate result

equation
q into the general definition of the rate constant, eq 4.3, we obtain
G=ic, = _o  Gyr0) o~ 1o (4.8)
= _ = r, = .
0 0 or lr=o 0 Aor? k = ko[l - 4nk((j)D’u(p)] (4.15)

It has the following general property following from the o .
stationary nature ofi(r) = SG(r, o, t) g(ro) dro : This is, in fact, the CK eq 3.3 expanded in termskgénRD
< 1, whereR = 9/, according to the definition in eq 3.5.

~ 39 Howeveru is no longer a phenomenological parameter. Rather,
f Go(r, To, 9) 9(rg) o = s (4.9) it acquires the proper definition in terms of the arbitrary transfer
rate:
Using this property after the integration of eq 4.7 okgwith
the weightg(ro), we obtain W (X ° W
17 e ) dy+ [rwie dix [ gy
~ g(r) fé( ' )W( y) "‘(I )d31 (4 10) u= X - Y
nr,s)=——— rr,s r')ya(r', s) dr . o
(r) == 0 | (f; W) a0
(4.16)

After inserting this result into eq 4.4, we get the final integral
equation for the desired stationary distribution: o Ky ) ) .
After substitutingW(x) = 4—é(x — 1) into this equation, we
ngr) =g(r) — fW|(r') éo(r, r', 0)ngr) der (4.12) obtainu = 1, which reduces eq 4.15 to the original Collins
Kimball expression for the contact reaction. However, for the
Equation 4.11 can be further simplified using the well-known exponential rate (eq 1.5), which accounts for the finite size of
Green function for free diffusion of charged reactafits: the reaction zong it follows that after integration (4.16)
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_ 1+ 5p/4+ 5078+ 5p%32 _

<1
1+ 20+ 20°+ p°+ pl4

u(p) (4.17)

This expression is identical to one that can be obtained from
eq 54 of ref 21. That work used a different method (EDA),
which implies the complete solution of the kinetic equation for

electron transfer. In contrast, our general result, eq 4.16, does
not depend on reactant dynamics and is applicable to an arbitrary

Wi(r). In particular, we will use it below to find«(p) for a
Marcus ratew(r), eq 2.5.

As seen from Figure 3, the difference between the dashed
line representing the CK result and the solid curve that is
considered to be exact is rather small within the available range
of viscosity variation. However, the difference increases at
higher viscosity, indicating that the electron transfer when
diffusion is slow is neither contacR(= ¢) nor quasi-contact
(R~ 0) as in the Collins-Kimball approximation.

To illustrate the nature of this approximation, let us insert eq
4.11 into the definition (eq 4.3) and use only the zero iteration
under the integralrg = 1). The result can be presented as

I

K=k~ (4.18)

where
[ W) Go(r, ', ) Wy(r) r
[fWi(r) d*r]?

By substituting thiskp for 47RD in a more general Collins
Kimball expression (eq 3.3), one obtains the result derived with
a “closure approximatior® that is given in ref 37. Evidently,

u = 4xoDIkp, which is obtained from eq 4.19, accounts for the
difference between remote and contact transfer.

The slope of the CK line obtained using the exponential
transfer rate is given by the facter from eq 4.17, which
decreases witlp = I/oc as shown in Figure 5. But the same
parameter can be calculated numerically from eq 4.16 for the
Marcus-type rate as well. From the numerical calculations, we
found how the correspondingdepends op = L/g, that is, on
the true tunnelling parametér By comparing these curves in
Figure 5, we see thatis larger thar if « is the same for both
curves. In particular, the exponent witk- 0.85 A is equivalent
in the CK approximation to the Marcus rate with= 1.65 A.

The latter value is very close to thevalue found in ref 17.
There,f = 2/L = 1 A~! was obtained from fitting the DET
theory with the Marcus rate to the experimental kinetic curves
reflecting the fluorescence quenching by electron transfer. The
small difference between the value obtained here and that
reported previously may be attributable to the fact that we
included neither the solvent radial distribution functggn) nor

the distance dependence of the diffusion constn}.

1Ky = (4.19)

V. High-Viscosity Asymptote of the Quenching Radius

The analysis of the dependence of the rate constant on
diffusion, which is shown in the curves in Figure 3, was proven
to be very useful. A similar analysis of the quenching radii
variation with the diffusion constant, which is displayed in
Figure 6, is even more instructive. The curve that represents
the transition from kinetic to diffusion control in the simplest
contact approximation levels off at the value of the true contact
radiuso, whereas the generalized Collinkimball approxima-
tion, which includes the reaction layer in the reaction sphere,
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Figure 5. Slope parameter of the Collins—Kimball relationship for

the Marcus transfer rate in the normal region (thick line) and for its
exponential transfer rate equivalent (thin line). The difference between
L andl related to the same is indicated by the vertical dashed lines.
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Figure 6. Dependence of the effective electron-transfer raigi®on
diffusion. Experimental data, indicated by circles, are approximated
by thin and dashed lines representing the contact and the Cellins
Kimball relationships, respectively. The thick line depicts the same
dependence, but for the exponential transfer rate Wwith0.85 A and

W, = 180 ns that is depicted by a dotted line in Figure 4.
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Figure 7. Same data as in Figure 6, but for a much larger range of
viscosity variation. The dashediotted line represents the linear
asymptote for the true Marcus rate, which is steeper than the asymptote
for the exponential approximation of the transfer rate (the end of the
thick line).

magnifies this value to the size & However, the effective
quenching radiRqg in more viscous solvents exceed even this
value and tend to increase BgD) does with further increases
of the viscosity.

The model dependencies of the radii on diffusion can be seen
better in Figure 7, where they are represented over a much larger
range of viscosity variation than the range that was available
experimentally. In the region of deep diffusion control of
electron transfer, both the contact and the generalized Cellins

15 20
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Figure 8. Rqo(D) dependence for the exponential transfer rate for two
different values of the tunnelling parameter. The thick line represents
the short tunnelling length obtained in the present work 0.85A),
whereas the thin line represents the overestimate8.4 A value found
in ref 13. The vertical solid lines indicate the viscosity range used in
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A. The real values oRq that we have obtained from the proper
analysis of the same data are much smaller then their rough
estimates that ignore nonstationary quenching. Therefore, fitting
the data with the remote quenching equation (eq 1.6) is
inappropriate, whereas the CollinKimball approximation of
guasi-contact quenching holds in almost all situations.

VI. Conclusions

By fitting the differential encounter theory to the most
accurate experimental data on electron-transfer kinetics observed
by fluorescence quenching, we obtained excellent agreement
between data and theory over the entire viscosity range used in
the seven experimental systems. Reasonable values of the
important parameters of electron transfer were obtained from
the best fit of the predicted diffusion dependence of the transfer
rate constant to the experimental value. A few important
conclusions can be deduced from this work:

(1) The effective quenching radii should be extracted from

the present study, whereas the dotted lines indicate the range studiedhe reg| quenching kinetics, taking into account its nonstationary

in ref 13 in which the effective electron-transfer radii were substantially
overestimated.

Kimball approximations are represented by horizontal lines. The

nature.
(2) The linear relationship between the inverse rate constant
and the inverse diffusion constant should be used to specify

heights of these plateaus indicate the sizes of the external radiithe kinetic rate constariy, and the effective CollinsKimball

of the reaction spheres. In contrast, the radius for remote
guenching with the exponential transfer rate lies far above the

radius of the quenching sphefR,
(3) For electron transfer in the Marcus normal region, the

plateaus and increases as the logarithm of inverse viscosity®XPonential approximation of the Marcus model is reasonable.

following eq 1.6. In fact, this relationship f&t(D) is the straight
line with slope'/, in the coordinates of Figure 7. This linear
asymptote is common for reflectihgnd absorbint'®boundary
conditions because under diffusional control it does not matter

Allowing an analytical solution of the problem, the exponential
approximation gives a better fit to the experimental data than
do contact or generalized CollirKimball models. The effec-
tive tunnelling lengtH is obtained from the appropriate fitting

whether there is quenching at contact. The excitations neverProcedure. o
reach contact because, for slow diffusion, they are quenched (4) This length can be related to an actual length by equalizing

by electron transfer farther apart, Ri> o.
However, it is important to remember that the largBst

the slopes of the CollinsKimball lines corresponding to the
Marcus transfer rate and its exponential approximation. The data

results from the most remote electron transfer represented byca@n also be fit using the Marcus transfer rate with numerical
the larger exponent of the Marcus transfer rate (eq 4.2) (seeMethods.

Figure 4). There, the asymptotic equation (eq 1.6) gives way to
a similar equation but one with the true tunnelling length

L2
RQ
Because in our cadeis almost twice as large dsthe dashes

dotted line representing the final asymptotic behavioRgfin
D) in Figure 7 is twice as steep as the heavy line calculated

YW,

4D

—a+§m( (5.1)

with the pure exponential rate. However, experiments at such a

high viscosity seem unattainable. Even the initial change in the
slope of the data is not definitive, which means that not only
the kinetic but also the diffusional electron transfer remains near-
contact in the available range of viscosities.

The opposite situation was expected in early widrowing
to a strong overestimation of the effective radii, which were
incorrectly extracted from the nonstationary quenching, the

maximal values (about 15 A) exceeded the contact radius (4

A) by a factor of almost 4. The transfer reaction at such a large
distance was attributed to diffusion control wh&D) has to

obey the asymptotic relationship (eq 1.6), which is represented

by the linear increase &g(In D) in Figure 8. Because the slope
of this line can be greatly overestimated by the incorrect
extraction ofRg from the kinetic data, there is nothing surprising
about the fact that the value 6ffound in ref 13 is also too
large: | = 5.4 A. WhenRg was found in the same way from

The work presented here solves an important, long-standing
problem—the overestimation of the tunnelling lendthin liquid
solutions!® Now it is clear that proper analysis will yield values
similar to those obtained here, such las= 1.65 A, which
corresponds to the Marcus value pf= 2/L = 1.2 A~ and
does not exceed earlier repoftk rigid structures, tunnelling
over long distances was sometimes attributed to the super
exchange through molecular intermediates (as occurs in mo-
lecular wiresy* However, in liquid solutions, intermolecular
electron transfer is expected to be shorter than intramolecular
electron transfer. When the intermediates are mobile solvent
molecules, the coherence of transfer is broken, and super
exchange becomes ineffecti¥fe.
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Photoionization affected by chemical anisotropy
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The kinetic constants of rhodamine 3B quenching by N, N-dimethyl aniline were extracted from the
very beginning of the quenching kinetics, recently studied in a few solvents of different viscosities.
They were well fitted with the conventional kinetic constant definition, provided the radial
distribution function of simple liquids was ascribed to the reactant pair distribution and the contact
electron transfer rate was different in all the cases. This difference was attributed to the chemical
anisotropy averaging by the rotation of reactants, which is the faster in solvents of lower viscosity.
With the proper choice of a space dependent encounter diffusion, the whole quenching kinetics was
well fitted with an encounter theory, using the Marcus [J. Chem. Phys. 24, 966 (1956); 43, 679
(1965)] transfer rate instead of the contact Collins-Kimball [J. Colloid. Sci. 4, 425 (1949)]
approximation. Not only the beginning and middle part of the quenching were equally well fitted,
but the long time (Markovian) rate constant was also found to be the same as previously obtained.
Moreover, the concentration dependencies of the fluorescence quantum yield and the Stern-Volmer
constant were specified and await their experimental verification. © 2007 American Institute of

Physics. [DOI: 10.1063/1.2423027]

I. INTRODUCTION

Energy quenching of A (excited thodamine 3B) by elec-
tron transfer from donor D (N, N-dimethylaniline) obeys the
typical reaction scheme

* WI ¢
A +D— [D+'11'A_] — s D"+A".
175

(1.1)

Here we are interested only in the first stage of this reaction
which is the irreversible bimolecular ionization with space
dependent rate W,(r). In differential encounter theory (DET)
the survival probability of excitation N(¢) is given by the

. 1,2
expression:

N= exp{— L cf k,(t’)dt':| =e¢™p(1), (1.2)
0

TA

where the first exponent is the natural decay with the lifetime
of the luminophore, 74, while P(¢) represents the Kinetics of
quenching by impurities whose concentration c¢=[D]. The
time dependent ionization rate “constant™ k,(¢) is actually a
convolution of W,(r) and the pair distribution of reacting
particles, n(r,7), but the particular expressions for the short-
est and longest time limits are very special,

k() = f Wi(r)n(r,t)d*r

f Wirg(rdr=k, att—0

47TRQD|:1 + \/—Qh:| at t — oo,
7Dt

The equilibrium radial distribution function g(r), together
with W,(r), specifies the initial rate constant k.=k;(0), while
the encounter diffusion coefficient D and the effective reac-

(1.3)

0021-9606/2007/126(1)/014506/7/$23.00
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tion radius Ry(D) determine the final (Markovian) quenching
rate k,=k1(°o)=47TRQD

In a very popular exponential model of tunneling the
ionization rate exponentially decreases with separation of re-
actants,

W= We 2o, (1.4)
where [ is an effective length of electron tunneling near the
closest approach distance o. For this model the quenching
reaction radius was calculated exactly with DET long ago,3

assuming that g(r)=1. Though very complex, this expression
takes the especially simple form under diffusional control,

Ry =0+ 5[In(W%/4D) +2C], (1.5)
where C is the Euler constant. Since the long time quenching
is always under diffusional control, the last formula is all one
needs to study the longest time kinetics. This is what was
done at the very first attempt to apply DET to a real experi-
ment (quenching of pheophytin a by toluquinone).4 Assum-
ing that at the times studied the quenching is already station-
ary, the experimentally found diffusional dependence of its
rate constant k;(D) was well fitted with the theoretically ex-
pected one [Eq. (1.5)]. Surprisingly, the value of / obtained
from the best fit appeared to be too large (more than 5 A).
This confusion showed that the stationary quenching had not
been reached in the restricted range of times studied. Unfor-
tunately, the shorter times were not available for experimen-
tal study in the Ukraine of the late 1980s.*

The nonstationary diffusional quenching P(r) was stud-
ied only recently: at moderate times and for a few different
concentrations.” All of them gave the same result for a
quantity

© 2007 American Institute of Physics
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FIG. 1. The kinetics of energy accumulation and initial quenching (normal-
ized to the maximum). Data for 0.27M solution of rhodamine 3B in aceto-
nitrile borrowed from Ref. 6.

—In P(t)/c = 4wR Dt + 8Ry\ D, (1.6)

which is actually [{k,(t')d?’ under diffusional control. This
relationship allowed us to find Ry, by fitting the nonstation-
ary experimental data, and make sure that the extracted tun-
neling length /=0.85 A had quite a reliable value.
However, the system thoroughly studied in Ref. 5 was
recently subjected to a new investigation by the same experi-
mental group but with another technique and a few new
solvents.® The main difference is that instead of a single-
photon counting used earlier, now the fluorescence upconver-
sion was employed, allowing more accurate study of the first
450 ps of the quenching kinetics. Contrary to the previous
investigation which was based on the long time asymptotic
behavior (up to 4 ns), now only the short time initial quench-
ing is available for study but with a much better accuracy
and shorter excitation pulse, f(¢). In fact what is measured is

t
f FON(E—1)dt' = e~k at k, > k;> 1/7,. (1.7)
0

First of all it makes absolutely inapplicable the previ-
ously used methodology. The strategy should be completely
changed: instead of the long time asymptotic behavior we
have to turn our attention to the alternative, short time
quenching, equally well defined in Eq. (1.3). From the initial
quenching rate we extract the kinetic constant which is a
convolution of the Marcus electron transfer rate and the equi-
librium pair distribution of reactants. From the best fit of the
experimental data, the absolute value of the space dependent
Marcus rate can be specified, as well as its contact value in
solvents of different viscosities. The dispersion of these val-
ues is related to the chemical anisotropy of the reaction, av-
eraged by rotational diffusion. The latter accelerates the con-
tact reactivity, making the kinetic constant viscosity
dependent, as was predicted long ago.7

With the well defined Marcus rate, the whole Kinetics of
energy quenching by electron transfer is fitted here, varying
only the diffusion coefficient and tunneling length. Compar-
ing the results with the popular contact approximation,” we
found it inapplicable to the system under consideration. On
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FIG. 2. The linear concentration dependence of the initial quenching rate in
three different solvents: acetonitrile (@), butyronitrile ((J), and benzonitrile
(D).

the contrary, the encounter theory of remote electron transfer
allows us not only to reproduce all the experimental findings
but also to predict the fluorescence yield concentration de-
pendence, as well as that of the Stern-Volmer constant.

Il. INITIAL RATES

The typical experimental equivalent of the quantity [Eq.
(1.7)] is shown in Fig. 1. Ignoring the excitation accumula-
tion, during the short light pulse represented by the ascend-
ing branch, one can find the rate of the initial quenching as a
slope of the linear descending branch equal to ck.. Doing the
same for other concentrations, we confirm the linear concen-
tration dependence of this rate for any of the solvents studied
in Ref. 6 (Fig. 2). As a result, we have three k, values, for
acetonitrile (Ac), butyronitrile (Bu), and benzonitrile (Be)
listed in Table I.

The initial kinetic rate constants found experimentally
have to be compared with the theoretical ones. These con-
stants should be calculated, not with a model but with the
Marcus electron transfer rate obtained in the lowest order
perturbation theory (regarding the coupling V|, between the
donor and acceptor states),”

1% 20r-o AG,+)\)?
Wt = oo - 25 g - SR

= U(r)e~ 4G+ NPHNT

(2.1)

Here the Boltzmann constant kz=1, while the free and reor-
ganization energies are

TABLE I. Kinetic constants at different viscosities.

SOLVENTS Ac Bu Be
k. (A3/ps) 289 161 80
7 (cP) 0.34 0.62 1.27
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FIG. 3. The equilibrium radial distribution function kindly placed at our
disposal by the authors of Ref. 6.

AG,=AG, + T(Q - Q) and N(r) = N+ 0(r),  (2.2)
g r

where AG,=AG,(0) and \,=\(0) are the contact values of
the free and reorganization energies, r.=¢*/Te is the Onsager
radius of the Coulomb attraction, and o=r,+r, is the sum of
the donor and acceptor radii. At a large static dielectric con-
stant e—, one can take r.=0 and AG;=AG,, as we did
carlier.” The reorganization energy is composed of the space
independent internal part, \;, and the external one, N\o(r),
accounting for the polar solvent reorganization. The latter is
given by the well known formula

e (1 1\(1 1 2
No= — ==+ —=—,
8meg\€p €/\rg 1, T
where €,,=1/ n? is the optical dielectric constant.
Calculating the true ionization rate one has to account
not only for the electron tunneling but also for the dynamical

solvent effect (DSE) that can control the transfer at the short-
est distances.'! Doing it as in Ref. 12, we have

(2.3)

11 A
and —=—1\/—,
T 4, VaT

(2.4)

ﬂ o~ (MG, + N)2ANT

Witr) = 1+U(r)7

where 7; is the longitudinal relaxation time of the solvent
polarization which assists the electron transfer.

Knowing k., AG;, \, 7;, and the true tunneling length L,
it is easy to find

j U(r)g(r) ( (AG, + >\)2> 3
k.= exp| — d’r,
1+U(r)r ANT
provided g(r) is also known. The preceding analysis of the
long time kinetics in the same system was made, assuming
g(r)=1." The last assumption is reasonable for the diffu-
sional quenching which occurs mainly at r~R,> o where
g(r) really tends to 1 (Fig. 3).

On the contrary, looking for the initial rate constant k.,
defined in Eq. (2.5), we cannot ignore the space modulation
of g(r) because the reaction proceeds everywhere. It is espe-
cially fast near the contact where maximal g ~4 (Fig. 3), but

(2.5)

J. Chem. Phys. 126, 014506 (2007)

using the hard sphere model g(r) in Eq. (2.5) the result after
integration appears to be only twice as much as obtained
with g=1. As a matter of fact the g factor was accounted for
only in the works of Tavernier ef al. using the hard sphere
model for g(r). All the necessary information can be ob-
tained from Ref. 10 and other works cited herein. Of course,
the hard sphere model usually applied to the quasisimple
liquids is the simpler but not the best choice. However, k.
resulting from the integration over  in Eq. (2.5) is expected
to be weakly affected by substituting the real g(r) for the
model one. Anyhow, revising here the Fayer work we have to
take g(r) exactly like it is there, neither worse nor better.

The main fitting parameter of the transfer rate [Eq. (2.1)]
is actually the electron coupling, V,,. Unfortunately, it cannot
be uniquely determined from a single constant k. that was
determined here and listed in Table 1. The complex expres-
sion obtained for it in Eq. (2.5) depends not only on V,, but
also on some other fitting parameters: 7; and L. To specify
them we have to fit the quenching kinetics at longer times
which are affected by translational diffusion that can be ei-
ther measured or extracted from the known viscosity 2. This
will be done in the next section to get the entire reliable
information about the real transfer rate W,(r) and its contact
value,

U o~(AG; + NN T
9

= 2.6
C 1+U.7 26)

where U,=V3/h\7/\T.

lll. DIFFUSIONAL ACCELERATION OF QUENCHING

To specify the nonexponential quenching kinetics suc-
ceeding the initial exponential decay, the general time depen-
dent rate constant [Eq. (1.3)] should be calculated with n(r,z)
obtained from the solution of the equation,

ﬁ:—W,n+£n, (3.1)

o 10 »[ on
Ln=——D(r)r’{ —+
reor ar or

L is the operator of encounter diffusion with space dependent
coefficient D(r) in the pseudopotential

u(r)=—T1Ing(r),

furnishing the equilibrium distribution of reactants before ex-

citation: Ln|,-o=Lg(r)=0. The initial and reflecting bound-
ary conditions to Eq. (3.1) are

on  du(r) )
—+—n
ar or

=0.

[oa

n(r,0) = g(r), (

They differ from those previously used in encounter theory,
assuming g(r)=1 and u(r)=0. This simplification ignores the
liquid structure turning L into a conventional diffusional op-
erator for neutral particles, L=D(r)A. Courtesy of Fayer, the
original experimental data published in Ref. 6 was given to
us by the authors for independent fitting. Unlike them, we
took for all the systems L=1.65 A instead of L=2 A chosen
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TABLE II. Static and optical dielectric constants.

SOLVENTS € €op
Acetonitrile 36.6 1.8
Butyronitrile 20.9 1.9
Benzonitrile 25.9 2.3

in their work. The main reason is that the smaller value is
more reliable, and this particular one was firmly established
earlier in our joint article with Gladkikh et al’ Here we
repeat the long time analysis once again using the new data
and new solvents studied in their last work® and keeping the
same A(r) calculated there with the intramolecular \;
=0.053 and the data: r,=4.12 A and r,=2.75 A (Table II).

The bulk diffusion coefficient D was obtained from 7 by
the Stokes-Einstein relationship, while the space dependence
of D(r) was defined as recommended by Deutsch and
Felderhof, 14

M) = _ﬂ]
D()‘D[l gt ro) |

This dependence was considered also in Ref. 15 but the pref-
erence there, as well as in subsequent works, was given for
an alternative formula for D(r) developed by Northrup and
Hynes.16 However, the latter involves an additional param-
eter, and we found it empirically to be less flexible and rather
ineffective in fitting the quenching kinetics.

Using AG;=-582 meV, calculated from Eq. (10) of Ref.
10, we just had to fit the kinetic curves for both moderate and
long times, operating with only two variable parameters, V,,
and 77, and keeping k.=const. This work was done for all
concentrations of the three solvents available, and the ex-
ample of the best fit is given in Fig. 4. The electron couplings
V,, obtained from such fitting for all the solvents are listed in
Table III together with 7; values which establish the upper
limits for the contact reaction rates, W, caused by DSE. The
literature values for 7; presented in Ref. 6 are the longest
ones if the longitudinal relaxation proceeds a few different
times. As was pointed out in such a case, only the shortest
time contributes strongly to the DSE.'"®? Therefore, we
were free to choose 7; from the best fit, whatever it is.

As a matter of fact, the time dependent rate constant k,(z)
reducing with time from k.=k;(0) to k;=k; () is the main
result of our fitting, allowing us to reproduce the quenching
kinetics at any desirable concentration. To compare the dif-
ferent solvents it is enough to relate them to the correspond-
ing k;(¢). This is done in Fig. 5 which indicates the diffu-
sional acceleration of quenching in the solvents of lower
viscosity.

This is natural for the final (stationary) constant which is
known to increase with D. For instance, in the contact ap-
proximation

_ _kokp

. , 32
" ko+kp (3.2)

where kp=4moD is the diffusional rate constant, while k is
the diffusion independent kinetic rate constant which is eas-
ily calculated from the obtained k; and kp. In the contact

J. Chem. Phys. 126, 014506 (2007)

T T T T T
0 100 200 300 400
t, ps

FIG. 4. The survival probability of excitation (in arbitrary units) at moderate
(a) and long times (b). For ¢=0.17M, 0.27M, and 0.48M (from top to
bottom) in acetonitrile.

theory k;(0) =k, for any diffusion (viscosity).

However, our quenching is not contact and its rate con-
stant is initially much larger k,. Moreover, unlike k&, the ini-
tial rate constant k. is not a constant at all but increases with
D being inverse proportional to viscosity (Table I). This is a
surprise. According to Table III not only k. and W,, but also
Vi, depend on the solvent viscosity although the latter con-
trols only the reactant mobility. The electron coupling Vj is
just the static property of the contacting reactants that should
not be affected by their motion.

This is the paradox resulting from the spherically isotro-
pic model of reactants whose reactivity is implied to be in-
dependent of the mutual orientation. Such a paradox can be
qualitatively resolved only by taking into account the chemi-
cal anisotropy of the reaction. Until now this factor was ig-
nored in the unified theory (UT) and integral encounter
theory (IET) of electron transfer'”> but was exhaustively
studied earlier by means of DET though in contact

TABLE III. Fitting parameters.

SOLVENTS Ac Bu Be
V, (meV) 4432 18.32 27.72
7. (ps) 0.05 0.1 4
W, (1/ns) 340 201 51.1
D (A?/ns) 440 240 120
k; (A3/ps) 22.84 12.27 7.85
kp (A3/ps) 37.99 20.72 10.36
ko (A3/ps) 57.26 30.12 12.63
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FIG. 5. The time dependent rate constants of quenching in acetonitrile (a),
butyronitrile (b), and benzonitrile (c).

approximation.4 The averaging of the spherical anisotropy of
the reaction by rotational diffusion can explain the increasing
of W, in less viscous solvents where rotation is faster. The
same is true for the corresponding effective value of V, if
the relationship (2.6) between W, and V|, remains unchanged.

IV. SPHERICAL ANISOTROPY OF ELECTRON
TRANSFER

The contact reaction is chemically anisotropic if the
sphere of the contact radius o is not equally active anywhere
but only within the small spot on it of the area s<<1. Then
the cage reaction is facilitated by rotation which averages the
spherical anisotropy.

Such a reaction studied in Ref. 7 is sensitive to the ki-
nematics of reorientation, modulating the reactivity of a pair.
The survival probability of the reactants in a cage, n(7),
decays nonexponentially with time, so that the effective re-
action is actually the inverse lifetime of the reacting pair
(Sec. V in Ref. 7):

© -1
W, = {f ﬁ(t)dt] .
0

The orientationally averaged 72(z) depends on the rate of ro-
tation and its mechanism, not mentioning the particular an-
isotropy peculiar to a given reactant pair. Since nothing
about this is known perfectly we will be concerned only with
the simplest rotational model illustrating a main feature of
the phenomenon: the acceleration of the reactivity by the
jumpwise reorientation with frequency 1/7,x 77.7 In the re-
active spot model the rate of the reaction is w. only within
the spot and zero outside it. The reaction kinetics studied in
Ref. 7 and used for calculating its hopping rate [Eq. (4.1)]
furnishes the desired result,
s 1

S =
I-s7 i

(4.1)

const

rotational control
M= T -9

+w. (1 =59)T7 o

¢ 0 w.S kinetic limit.

(4.2)

As seen in Fig. 6, the effective contact rate W, which is the
closest analog of W, quasilinearly depends on inverse vis-

J. Chem. Phys. 126, 014506 (2007)
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FIG. 6. The contact transfer rate (@) compared with the cage rate of the
stereo-anisotropic reaction, accelerated by jumplike reorientations (solid
line).

cosity, indicating that contact transfer is under rotational
control. If s=0.2 the latter is approximately the same as W,
in Table III, W,=0.25/7,=250 ns~! provided 7,~ 1 ps and
w,>10"3 which is necessary to maintain the true rotational
control (w.7y>1). Under such conditions the spherical an-
isotropy of the reaction can be really averaged by reactant
rotation. If the latter proceeds as a sequence of sudden turns,
the reaction mechanism is hopping (jumping) provided the
jump size 6 is larger than the reaction spot and the hopping is
faster than the orientational relaxation: 1/7,~ 6*/7,. More-
over, if the jumps are even smaller than the reactive spot then
the system penetrates into it by rotational diffusion. The dif-
fusional reaction in a cage which is an alternative to the
hopping one was also studied in Ref. 7 and was used to
describe the chemically anisotropic radical reactions consid-
ered as “pseudodiffusional.”13

The continual diffusion in the angle space can also be
originated not from sudden jumps but from the free inertial
passes of finite length,17 and the chemical activity is not
necessary localized in the spot but can be distributed over the
whole sphere.7 The true mechanism of the anisotropic reac-
tion is worthy of special consideration accounting for the real
geometry of the reactants and the true mechanism of their
rotation, available for independent (spectroscopical)
investigation.17 Unfortunately, all the theories of chemical
anisotropy7’13’21’22 addressed only the contact reactions. Nei-
ther of them spreads out to the remote electron transfer con-
sidered here. As long as such a transfer is spherically isotro-
pic we can do no more than to recognize why its effective
coupling is viscosity dependent.

V. FLUORESCENCE QUANTUM YIELD

With this effective coupling and other parameters ob-
tained from the best fit, we got the reliable time dependence
of k,(z) which monotonously reduces with time, approaching
the final (stationary) rate constant k;=k;(«). Being equalized
to the well known expression (3.2) of the contact theory, it
allows one to get two major parameters of the latter: k, and
kp. Using them in the famous Collins and Kimball formula,8

Downloaded 23 Mar 2007 to 132.77.4.129. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



014506-6

V. S. Gladkikh and A. I. Burshtein
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FIG. 7. The time dependent rate constant in acetonitrile, calculated by the
encounter theory of remote electron transfer (a) and in the contact approxi-
mation of Collins and Kimball (b), provided the stationary rate constants
k;=k () are the same. The dotted line represents the Markovian description
of quenching: k;=const at any time.

k —
k(1) = k,-(l + k—oex erfe \'x>, (5.1)

D
where x=(1+ko/kp)*Dt/ 0, we can restore the whole time
dependent constant k;(¢) of contact theory. In Fig. 7 we com-
pared it with that found here for the remote transfer. Being
almost the same at rather long times, they are quite different
at the very beginning. The contact theory underestimates the
initial quenching since ky<<k,.. This defect is also seen in the
kinetics of quenching which is very different in the contact
and remote models of electron transfer. The remote energy
quenching proceeds much faster than the contact one, espe-
cially at the beginning (Fig. 8).

As a result, the luminescence quantum yield appears to
be quite different in these two cases. According to its general
definition

n= J“’ N(t)dtl T4 = (5.2)

0 1 +ckry’

where « is the constant of the Stern-Volmer law which is
usually expected to be linear in coordinates 1/7 vs ¢. Con-

07
o]

0.01

T T T T T A 1
0 100 200 300 400
t, ps

FIG. 8. The long time and short time (in the inset) decays of excitation in
acetonitrile at quencher concentration ¢=0.27M. The dashed lines are ob-
tained in contact approximation.
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FIG. 9. The nonlinear Stern-Volmer law for the luminescence quantum yield
in acetonitrile (@), butyronitrile ((J), and benzonitrile (A).

trary to this expectation, the substitution into Eq. (5.2) of the
general expression (1.2), with all parameters already known,
leads to the nonlinear dependence of 1/% on ¢ (Fig. 9). In
other words the Stern-Volmer constant « in Eq. (5.2) is con-
centration dependent. Only at the lowest quencher concen-
trations,

- —t/T, [ ' ’ ’ dt
p= | e l—c| k(t)dt' | —=1-ckyry,
0 L 0 TA

where the original Stern-Volmer constant

o0 [t
dt
K():f e_t/TA JK](tl)dt, -
0 | Jo TA

is really concentration independent. For our system it ap-
pears to be a bit different in different solvents, as shown in
Table 1V.

However, the true constant from Eq. (5.2) increases at
higher concentrations. This dependence, «(c), presented in
Fig. 10 for all three solvents studied, can be subjected to a
special experimental inspection for checking the self-
consistency of the present theory and its validity limits.

(5.3)

VI. CONCLUSIONS

Although the most successful, this is not the first attempt
to fit the different experimental data obtained for one and the
same system in acetonitrile. Since all the data are compat-
ible, one has to expect that the principal parameters of the
transfer rate W,(r) obtained from the best fit in the present
work must be comparable with those found earlier, from the
fitting made in 2006 (Ref. 6) and 2002 (Ref. 5). The main
ones listed in Table V indicate that there is nevertheless the
wide scatter of the published results. There are reasonable
explanations for such a discrepancy.

TABLE IV. Original Stern-Volmer constant.

SOLVENTS Ac Bu Be

Ko (A3/ps) 27.8 16.7 12.0
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FIG. 10. The concentration dependence of the Stern-Volmer constants in
acetonitrile (@), butyronitrile ((J), and benzonitrile (A).

Making our first attempt in 2002 to fit the theory to the
available experimental data, we had at our disposal only the
long time kinetics of quenching and did not take into account
the liquid structure represented by g(r). It is not surprising
that extrapolating too far to initial times and assuming g(r)
=1 at any r, we underestimated the initial rate constant
which appeared to be much closer to ky=57.26 from Table
III than to the actual k.=289.5.

In 2006, the authors of Ref. 6 using the data for moder-
ate times and accounting for a true g(r) arrived at k, which is
almost twice as large as before but still much smaller than
the actual one obtained from the initial quenching in the
present work. However, taking ad hoc too large a L=2 A
they enhanced the quenching rate everywhere and had to
reduce W,., pushing down V|, to keep k. unchanged. In the
present work we returned back to the earlier specified
smaller L=1.65 A and included g(r) into consideration. Both
these factors significantly enhance the initial quenching
constant k. which we bring into one-to-one correspondence
with the value first obtained here from the original experi-
mental data.

The W, and V,, values obtained here seem the most reli-
able. They are based on the analysis of both the initial and
moderate quenching kinetics and account for the actual lig-
uid structure and DSE. However, the spherically isotropic
model of tunneling ignores the real chemical anisotropy of
transfer. Therefore, we relate to these data as to the effective

J. Chem. Phys. 126, 014506 (2007)

TABLE V. Comparison of the results.

WORKS k. (A3/ps) W, (1/ns) Vo (meV) L (A)
Present 289.5 340.38 44.32 1.65
Ref. 6 94.30 124.6 19.22 2
Ref. 5 51.33 203.8 25.23 1.65

parameters of the model which perfectly well describes the
whole quenching kinetics, allowing us to predict the fluores-
cence quantum yield and the concentration dependence of
the Stern-Volmer constant. Moreover, the estimate of the
most important tunneling parameters is rather reliable and
does not depend too much on the choice of model. They are
found in the admissible interval of possible values,

20meV < Vy<45meV, 15A<L<2A.

Most problems do not require better accuracy.
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The fluorescence dynamics of perylene in the presence of tetracyanoethylene in acetonitrile was studied
experimentally and theoretically, taking into consideration that the quenching is carried out by remote electron
transfer in the Marcus inverted region. The initial stage was understood as a convolution of the pumping
pulse with the system response accounting for the fastest (kinetic) electron transfer accompanied by vibrational
relaxation. The subsequent development of the process was analyzed with differential encounter theory using
different models of transfer rates distinguished by their mean square values. The single channel transfer having
a bell-shaped rate with a maximum shifted far from the contact produces the ground state ion pair. It was
recognized as inappropriate for fitting the quenching kinetics at moderate and long times equally well. A
good fit was reached when an additional near contact quenching is switched on, to account for the parallel
electron transfer to the electronically excited state of the same pair. The concentration dependence of the
fluorescence quantum vyield is well fitted using the same rates of distant transfer as for quenching kinetics
while the contact approximation applied to the same data was shown to be inadequate.

I. Introduction model cannot consistently explain both the rapid initial decay
(upconversion data) and the slower decay investigated with time-
correlated single photon countidgThe fitting parameters of
the model which are good for short times are poor for long-
time decay and vice versa. This deficiency is inherent in the
contact approximation which completely ignores the static

Fluorescence quenching in solutions is often considered
within the classical theory of Smoluchows$kind Collins &
Kimball,2 assuming that the reaction is carried out at the closest
approach distance between excited energy donor D* and

acceptor A. This popular contact model applied to numerous . . e . ; -
systemsis reasonable for proton transfdaut bad for the long- quenchmg, preceding the diffusional one. F_maIIy, Itwas W'de.ly
recognized that “as long as we adopt realistic values of diffusion

range energy transfer governed by multipole interacttoh$he . . !

electron transfer is intermediate between these two extremes.coeﬁ'c.'ems’ the experimentally obtalneq decay qurves...cannot
If the reaction occurs in the normal Marcus region, it can be be satisfactorily reproduced by the Collins and Kimball model,
considered as contact at fast diffusion, but at slow diffusion whatever values of the parameters are assurtfed”.

the effective quenching radius significantly exceeds the contact |arg’%l‘?;rll?j“g;socrjlfe:l:zlfg?’r;wvgg:js%??hgoezrll:c\t/\r,gz-g};n;?:rt?;t%u-
distance®8°In the inverted region, the electron transfer is remote P

at any diffusion because the maximum of the Marcus rate is W'(r).' In the normal Marcu_s region, the rectangular mode! with
shifted out of contacti%11In general, the ionization carried varying parameters is a bit better than the contact one, as well
out by the position dependent rafé(r) is represented by the as the exponential model,

following reaction schemé:

2(r —
y Wi(r) = W, exp(— %) (1.2)

D* +A—D"+A" (1.1)

o which is the rough simplification of the single channel Marcus
The remote transfer in liquids assisted by the encounter diffusion rate:
of partners is well described by the differential encounter theory 2 2
(DET)'2"17 recently reviewed in ref 3. However, for a long time W(r) = V_O ex;{— 2(r — 0)\ Va exd — (AG, + 1) )
the attempts to describe the reaction kinetics with either contact ! h L Jy T 4T

theory or DET were either unsuccessful or led to the nonphysical

values of the electron-transfer parameters. = U(r)e 4" AT (1.3)
For instance, Fleming et al. studied the diffusion-influenced

guenching reaction between rhodamine B and ferrocyanide andHereV, andL are the contact matrix element and the length of

came to the conclusion that the Collins and Kimball contact the electron tunneling, whil&(r) andAG(r) are the reorganiza-

10.1021/jp0492669 CCC: $27.50 © 2004 American Chemical Society
Published on Web 07/10/2004
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limit the reaction is remote, not to mention the diffusion-
controlled ionization. However, we will demonstrate that the
fitting of the experimental data with only this bell-shaped rate
is impossible but becomes plausible if additional near contact
guenching is added.

The origin of such an additional quenching may be attributed
to parallel electron transfer to the excited state of a cation radical
as suggested in ref 30. This transfer is much less exergonic and
therefore occurs in the normal Marcus region, near the contact:

tion and free energies of ionizatiof, is the temperature in
energy unitsKg = 1), ando is the closest approach distance.
Unfortunately, the very first fitting of the exponential model to
the transfer kinetics also led to confusion. It was done by
studying the quenching of excited pheophwihy toluquinone
in solvents of different viscosit$? The best fit for these data
was obtained aiV; = 1.8 x 1000571, g =4 A, andl = 5.4 A.
This value ofl is abnormally large, not to mentidnthat should
be even twice as larde.

The Marcus rate (1.3) was also used for fitting the entire

qguenching kinetics, but the authors failed to find the unique (DY) + A~

values of two fitting parameter$/p and L, in low viscosity D'+ A / (1.6)
solventst® Only for high viscosity ethylene glycol they were '
able to fix reasonable values, but the choice of ethylene glycol D+ + A-

was inappropriate for the reasons presented in ref 26 and

confirmed late® To reduce the number of parametdrsywas Alternatively, one can consider the multichannel transfer to
arbitrarily put as 2 A in ref 27 since this is “a value usually numerous vibronic sublevels of the ground electronic state of
admitted in the literature”. Such a choice allowed the authors the ion radicals. The total rate of their production through all
to fit closely the transient quenching kinetics with rather small the vibronic channels is broader and located closer to the contact

Vo =6+ 7 meV.

However, the first successful attempt to estimateom an
unconditional fitting of the theory with an exponential rate to
the real data was accomplished only receffljre progress in

experimental techniques made possible much more accurate
investigation of the electron transfer between excited rhodamine

3B in the excited state ard,N-dimethylaniline in the normal
Marcus region. It was studied in seven solvents of different
viscosities?® The theoretical interpretation of the results was

based on the analysis of quenching kinetics that obeys the

universal asymptotic law:
In P = —c[47R,Dt + 8R,’VaDt] att—o (1.4)

whereD is the coefficient of encounter diffusiomg is the
effective quenching radius, and

P(t) = N(t, c)/N(t, 0) = R(t) expt/zp) (1.5)
is the ratio of excitation populations with and without quench-
ers: N(t, ¢) andN(t, 0) = N(0) exp(t/zp). The last termin eq
1.4 contributes to the nonstationary (transient) kinetics, which
is not negligible over all times studied experimentally. The
significant overestimation dRg as well ad in ref 25 resulted
from ignoring this very term in the course of the fitting.

The proper extraction d?q from the experimental data, made
in ref 8, allowed authors to fit the quasicontact and exponential
models to the diffusional dependenBg(D) getting from it a
reasonable value df = 0.85 A8 Later a similar asymptotic

than the rate (1.3331.32

(AG, + A + hwn)?

W(r) = U(r)ie‘ﬁ ex (1.7)

4T

where S = A¢hw, while o is the frequency andg is the
reorganization energy of the quantum vibration. Since there is
no straight evidence in favor of one of these two possibilities
we will sequentially consider both of them.

In fitting the real data, provision should be made for saturation
of the ionization rate at short distances. There the tunneling
can be so fast that the limiting stage becomes the diffusional
motion along the reaction coordinate to the crossing pSifft.

In polar solvents, this is the so-called “dynamical solvent effect”
limited by the longitudinal relaxation of polarizati§hTaking

into account this effect the single channel rate takes the
following form:36.37

u(r) o (AGHHAYAT _

W ef(AG|+/1)2/4/1T
14 U(ne 0

Wi(r) =
(1.8)

The upper limit of the rater™1, is different for activationless
(AG, = 0)*3 and highly activated reaction&\G, > T),35 but
we will use the interpolation, which is reasonable between these
two limits where most of our experimental data féfts:

1_1
T 4o VaT

A

(1.9)

analysis of transfer kinetics was employed to perylene quenched

by N,N'-dimethyl-aniline in a dimethyl sulfoxide (DMSO)
glycerol mixture whose viscosity changes with composifion.
Varying only| it was found from the best fitl = 0.81 A, W,
= 29.12 nsl. The transfer in this system also proceeds at
relatively smallAG, < 4, that is in the normal Marcus region.
ThereW,(r) monotonically decreases with distance and can be
modeled with the exponential function of eq £.2.

Here we at first turn to a reaction in the inverted region carried

out by a strong electron acceptor, tetracyanoethylene (TCNE).

The latter allowed Rehm and Weller to get the most exergonic
points of their famous plot, although with other fluorophotes.
The quenching of perylene (the lifetinmg measured after argon
bubbling is 4.34 ns in our experiments) also occurs deeply in
the inverted Marcus region whereG(o) > A(o). At so high

an exergonicity,W(r) given by eq 1.3 passes through the
maximum shifted out of contaétso that even in the kinetic

Here 7. is the longitudinal relaxation time of the solvent
polarization, which assists the electron transfer. For the mul-
tiphonon rate (1.7), the generalization is straightforward:

.

The saturation effect establishes the upper limit for the Arrhenius
pre-exponentW, which is lower, the slower the dielectric
relaxation. In Figure 1 we demonstrate how this limit is reached
for a few solvents whose 4/ values were tabulated in ref 39.
At the shortest interparticle distances all the curves are
significantly lower than the tunneling ratd(r), especially those
with long 7. This difference strongly reduces the total rate of

00

(AG, + A + hwn)?
4T

W u(r)e s’
r =
| Zn! + U(r)re 58

(1.10)
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24004 ] By substituting expression (2.1) with thig(t) into eq 1.5
VU one reproduces the asymptotic formula (1.4) successfully fitted
20004 1 | to the long time kinetics. But at shorter times this asymptote is
\ preceded by the static quenching with the rate constant followed
1600 from eqs 2.2 and 2.3 &t =D = 0:
‘v
c
= kM) = fWr) e M dr =k, — W+ (2.6)
800+ The quenching always starts with the maximal (kinetic) rate
400 constant

O T T T T T T T T T T T T T T T T T T T 1 ko == k'(o) - f\/\/l(r) d3r == W\IID (2.7)
50 55 6.0 65 7.0 75 80 85 9.0 95 100
r,A but then develops with retardation, which is the sharper, the

Figure 1. The Arrhenius pre-exponent as a function of distance for higher is the mean square value
four solvents with different ¥ values: (1) acetonitrile (2.0 p9, (2)

acetone (1.2 p3), (3) methyl acetate (0.6 pY, (4) benzonitrile (0.21 2 2 3

ps1). Other parametersio, = 1.15 eV;V, = 62 meV;o = 5 A. W= fW| (r) dr (2.8)
activated electron transfan(r), which is monotonic in the The asymptotic analysis based on eq 2.5 or (1.4) is determined
normal Marcus region (Figure 2A) and has the bell shape in by the universal paramet®&; defined by the far periphery of
the inverted one (Figure 2B). Wi(r) exponentially decreasing with distance. It can be ap-

The outline of this article is as follows. In the next section, proximately found from the equatidfi:
the general formalism of DET will be briefly outlined. In section
Il the short, moderate, and long-time kinetics will be fitted W|(RQ)|2/D =1
sequentially with single-channel, double-channel, and multi-
channel models. In section IV, the experimental dependenciesyhich is not sensitive to that part @ (r) which is deeply inside
of the product quantum yields on quencher concentration will the quenching sphere of radi®. On the contrary, the static
be compared with the theoretical ones specified with the transfer yyenching starts from the maximal valuesWii(r) and lasts
parameters obtained from the best fit to the kinetic data. In yntj| all the interior of the quenching sphere is burned. To
section V, we calculate with the same parameters the concentrayjiscriminate between the different modelswi{r) the strategy
tion dependence of the quantum yields of all the products of of fitiing employed in refs 8 and 29 should be changed. Here
ionization. The results obtained are summarized in Conclusions.\ye will start by analyzing the static quenching and only after

that the late diffusional quenching, as well as the total effect

II. Differential Encounter Theory of the Phenomenon represented by the fluorescence and products quantum yields.

In the DET developed in refs 3217 and reviewed in ref 3

the quenching kinetics is given by the general expression Il Experimental
. The excited-state dynamics of perylene (Pe) has been
R(t) = exp(-t/tp — cj(;k,(t’) dt’) (2.1) measured by fluorescence upconversion (FU), using a setup
already described in ref 41. Excitation was performed at 400
where the time dependent rate constant is nm using the frequency-doubled output of a Kerr lens mode-

locked Ti:sapphire laser (Tsunami, Spectra-Physics). The full
k(t) = fW| NG, 1) or 2.2) \évi%tr;sa.lt half-maximum of the instrument response function was
Pe was recrystallized from benzene before use. TCNE was
recrystallized from chlorobenzene and sublimed twice. Aceto-
nitrile (acetonitrile, UV grade) was used as received. All the
chemicals were from Fluka. The sample solutions were placed
h=—W(n+Ln 23 in a spinning cell with an optical path length of 0.4 mm. The
) (2:3) absorbance of the sample at 400 nm was around 0.1, corre-
sponding to a Pe concentration of the order of 4. All
sample solutions were bubbled with Ar for-230 min before
use. After the measurements, no significant sample degradation
was observed.
an The fluorescence dynamics of Pe in acetonitrile was measured
n(r,0)=1 and §|r:g =0 (2.4) with various TCNE concentrations: 0, 0.01, 0.08, 0.16, 0.32,
and 0.64 M. The fluorescence dynamics of each solution was
Over rather long times, the quenching is accelerated by Measured of five different time windows: 6, 35, 120, 300, and
diffusion and the corresponding asymptotic expression for the 1200 ps. To correct for any misalignment of the optical delay

ionization rate constant acquires the following general form: line and to have a signal intensity proportionaF) from eq
1.5, the fluorescence time profiles at [TCNE]O were divided

The pair correlation function(r, t) takes into account that the
remote transfer running with the rawi(r) is accelerated by
the encounter diffusion represented by operator

If there is no inter-reactant interaction then the diffusional
operator. = DA, while the initial and the boundary conditions
to eq 2.3 take the following form:

2 by the corresponding time profile at [TCNEF 0. This
1+ & att— oo (2.5) procedure was performed with the data acquired in all time
7Dt ' windows except the shortest one. The fluorescence dynamics

k(t) = 47R.D
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Figure 2. The ionization rates in acetonitrile with and without taking account for the transfer saturation (solid and dashed lines correspondingly).
(A) Transfer in the normal Marcus regiodAG, = —0.6 eV. (B) Transfer in the inverted Marcus regiaks = — 2.14 eV. The rest of the

parameters are the same as in the previous figure.
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should be the same for all concentrations. In fact, when these
guantities are plotted against time all of them are practically
the same for any concentrations, until they decrease (Figure 3B).
However, each of them levels off approaching the level of noise.
The border time between the descending branch and horizontal
tail establishes the upper border of the credibility interval where
the data fit the theoretical dependence (4.1). These intervals
restricted by the vertical dashed lines are longer the smaller the
guencher concentration. At the lowest concentrations such
intervals are larger than that available for experimental study,
but the depth of the reaction within the latter is small. The most
suitable for fitting is the curve foc = 0.16 M. It reaches the
same reaction depth at higher concentrations, but the integral
Soki(t’) dt is already as large as it is at lower concentrations.

- B Besides, it has the lowest noise-to-signal ratio.
0.0 4 A. Accumulation and Dissipation of Energy at the Shortest
6.0 Times. The pulse excitation to some vibrational sublevel of the
< 120 upper electronic state gives way to the fast vibrational relaxation,
s AW simultaneous with the initial electron transfer. The latter
g -18.14 : ¥ proceeds with the highest (kinetic) rate constant (2.7) that allows
8 a1l ! i it to compete with the vibrational relaxation. This competition
= i | can be represented by the set of model kinetic equations:
o -30.1 ! ! 0.16
£ | |
e 0.01 7008 Ry = =3y Ny(0) = N, (4.22)
-42.2 — T 77— T
0 200 400 600 800 1000 1200 1400
Time, ps N = %Nl —ckN NO)=0 (4.2b)
v

Figure 3. (A) The quenching kinetics at different concentrations of
electron acceptors given in molar (numbers above curves). (B) The . o .
same but in an anamorphosis, extracting the universal time dependencevhere N; and N are the populations of initial and final

of fik(t") dt'. The vertical dashed lines indicate the upper borders of (fluorescent) vibronic states, amglis the vibrational relaxation

the credibility intervals for the highest concentrations. time in the sub-picosecond scale. As a result, we have the
following single equation for accumulation and dissipation of

was measured at 495 nm, where the effect of vibrational fluorescent particles:

relaxation is the smallest, as discussed in refs 42 and 43.

| — NO —t/7,
N= 7 e " —cikyN (4.3)

v

IV. Fitting Kinetics of Quenching after Pulse Excitation

From the system response to the short pulse excitation in the ) ) _
presence and absence of quenchers, one can measure thEne solution to this equation,
qguenching kinetic®(t) given by eq 1.5. It is sharper the higher
the quencher concentration used (Figure 3A), but according to N = No [e’t”“ _ e*Ckot] (4.4)
the DET eq 2.1 the quantity 1— ckyr, :

InP(t)

— —ftk (t') dt (4.1) describes both the ascending and descending branches of the
c o '

initial kinetics locating the maximum between them.
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Figure 4. The FU time profiles measured with the time increment
0.062 ps at the same quencher concentrations as in the previous figure.
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TABLE 1
without convolution with convolution
c/M 7./ps kd/M~tps? z.lps ko/M~tps?
0.08 0.282 0.20 0.215 0.25
0.16 0.257 0.20 0.200 0.22
0.32 0.255 0.20 0.186 0.23
0.64 0.183 0.20 0.119 0.21

In fact, the vibrational relaxation is not completely damped,
as seen from Figure 4 which shows the fluorescence decay
measured by the FU. Using the aperiodic model of vibrational
relaxation (4.4) for fitting to very short data (up to 6 ps) we are
looking mainly for the quenching parametgrand will return
back to the coherent vibrations afterward. The fitting was done
in two ways: with and without convolution with the instrumental
response function (IRF). They both gave similar results as shown
in Table 1.

An example of the fit to the highest concentration of
quenchersc = 0.64 M, is given in Figure 5. It is better to
include IRF in the fitting procedure, but the final valueskef
are not affected too much. Since the further fitting of the longer
time behavior will be done without convolution we set for it

ko=0.2M 'ps*=3226 Kps (4.5)
There is an approximately linear increase in the vibrational
relaxation rate I, with quencher concentration that could be
attributed to the intermolecular contribution to this rate. It can
be ascribed to the vibrational energy transfer from Pe to TCNE
(see Supporting Information).

B. Fitting the Moderate and Long Times with a Single-
Channel Rate.If there is only the single channel of electron

transfer (to the ground state of the ion pair), then in highly polar
solutions ther-dependence of the ionization free energy is

J. Phys. Chem. A, Vol. 108, No. 32, 2008671
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Figure 5. Fitting the very fast kinetics of accumulation and dissipation
of the excited electronic state with (middle) and without (bottom)
convolution with IRF. The residual of the former is shown at the top.

4
Per * + TCNE

3
2
3 2= 1
; N[ o
-0
Per + TCNE

(Per®)* +TCNE™

(Pery* + TCNE™

(Per’)* + TCNE™

(Per’)* + TCNE™

3

Per’ + TCNE™

265

Figure 6. The energy diagram for the pair perylefieTCNE before
(left) and after (right) the electron transfer.

It depends on the interparticle distance at contacind
contact reorganization enerdy = A(o0). In acetonitrile

lo=1.15eV,ancb=5A

is an

(4.7)

average distance between the contacting Pe and TCNE.

In fact, it varies between 3.5 and 6.8 A, depending on their

coordination, but the effects of chemical anisotropy will be

ignored here. Assuming a reasonable value for

L=1.24A

(4.8)

insignificant and according to the energy scheme of Figure 6 we can find the remaining fitting parametés from the kinetic

we have:
AG/(r) = AG(0) = AG, = —2.14 eV

The “outer-sphere” reorganization energy at contact is half at
infinite separatior?:

Ar) = 22 — alr) (4.6)

reaction constant (2.7), whose value is already fixed in eq 4.5.

In the case of a single channel and weak transfer proceeding

V=

Rk [ ex;{— 2Ar=o) O))—\/J_T

L

AT

with the rate eq 1.3Y¢? is directly proportional td:

p( [AG, + i(r)]z) d3
ex —‘——7ﬁ65?——' r
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19 with what was found when Tachiya and Murata fitted the free
energy RehmWeller dependence of the SteriWolmer con-
stant that they identified witk..** According to their Figure 2,

the transfer in the most exergonic systems is kinetic, thigt is

~ ko at any time. Since our system is one of those it should be
expected thaky < kp which is not the case. Being free in
choosing the fitting parameters the authors made their conclusion
assuming that

:—_‘\ T T T
= 0 20 40 60 80 100 120 140
Vo =12.4 meV

0.1 Making this choice they greatly underestimate the kinetic rate

constantkg which is in their work 42 A/ps, that is almost an
order of magnitude smaller than that in eq 4.5 obtained
experimentally.

Another possible cause of the discrepancy is the “closure
approximation” used in this work. It is not much better than
the primitive contact approximation and is especially bad in
_ o _ the inverted region where the transfer is essentially remote.
Figure 7. Fitting of single channel model to moderate (top) and long Fortunately, this approximation is not obligatory and had been

time (bottom) quenching kinetics eat= 0.16 M. Dashed lines obtained . . : :
choosingD = 2.45x 1075 cn?/s; solid lines represent the best fit with ignored in the preceding work of Marcus and Sidersiho

0.01

1E-3 T T T T T )
0 200 400 600 800 1000 1200

Time, ps

D = 2.95x 105 c?s (0 = 5 A). applied to the similar data analysis the regular encounter
theory5-17 They also demonstrated in their Figure 1 thavat
It follows from this relationship that = 4.5 meV andip = 0.56 eV the reaction falls under kinetic
) control when the exergonicity of the transfer exceeds 1.5 eV.
_ _Vo Vr _ 1 However, according to their Figure 2 the reaction remains
Vo =89.8meV and U, = o =127 ps diffusional up t0AG, = — 2.2 eV if
VAT

This value ofUy = U(0) greatly exceeds the upper limit of the Vo=23meV and 1,=0.86 eV

transfer rate established by
This choice is much closer to our own although it is made for
1 1 o . another system studied in refs 46 and 47. Marcus and Siders
@ = 22N 7T =1.9ps (4.9) p_ropo_sed also anpthgr way to _make_ highly exergonic reactions
L diffusional, by taking into consideration the parallel transfer to
the excited electronic state of the product. Until now this was
a dominant idea for how to explain the too wide diffusional
plateau obtained by Rehm and WelfeHowever, it will be
shown in the next subsection that the electronic excitation which
occurs near the contact is much less helpful if one accounts for
electron-transfer saturation which was ignored by Marcus and
Siderd® as well as by Tachiya and Murata.
C. Fitting the Double-Channel Model. Looking for all
V,=138meV and U, =300 p§1 (4.10) possible interpretations of our data, we should take into account
that the perylene cation has a number of low lying excited
Using this parametrization, we tried to fit the kinetic data at electronic states and at least three of them are energetically
moderate and long times having for our disposal only one fitting accessible from the excited reactant (Figure 6). Therefore, the
parameter: the diffusional constadt The best results obtained ~ formation of the cation in one of these states can compete with
for the solution with the smallest noise-to-signal ratio are shown creation of the ground-state catitr>® There are also some
in Figure 7. At smallD, the quenching at moderate times is indications of excited ion generation in the course of highly
fitted well, but at long times is greatly underestimated. At large €xergonic fluorescence quenching studied in other systems:
D, everything is quite the reverse: the quenching at long times cyanoanthracene (A) and aromatic amines or aminobenzenes
is well approximated, but overestimated at moderate times. This (D).**?In all such cases there are parallel channels of ionization,
is an alternative consistent with the conclusion made by Fleming 0 the ground state ¢ 0) and to the excited charged products
et alls (i=1,2,..). Inour system, the transfer is exergonic to only
However’ it follows unambiguous'y from the Comparison of three states. Tak|ng them into aCCOUnt, one should represent
the short and long time results that the initial kinetic rate constant the total transfer rate as a sum over parallel channels:
ko = 322.6 Aps is significantly larger than the final stationary
rate constant

wheret. = 500 fs (for acetonitrile). The inequalitz|,—, >
1, clearly indicates that the saturation of electron transfer near
the contact cannot be ignored.

Using the cropped transfer rate (1.8) instead of (1.3) in eq
2.7 one can find by a few iterations the approprki@eand Uo.
They appear to be larger than the previous ones to provide the
same value oko:

3
Wi(r) = ) Wi(r) (4.12)

k = k() = 47R,D (4.11) £
which is approximately 31.4 ?}ps. Such a nonstationarity of  All partial rates have the same form (1.3), but differ&, =

transfer is the direct indication that the quenching is under AG; and tunneling matrix element4. All of them contribute
diffusion control ands ~ 40D < ko. This finding is in conflict to the kinetic rate constant



Electron Transfer in the Inverted Region

k= ij W(r) dr =

Borrowing AG; from the energetic scheme of Figure 6 we
reproduced thdg value (4.5) with

3

Ki(AG) (4.13)

Vo=123meV and V;=138meV i=1,2,3 (4.14)

Although tunneling to all the excited states was assumed to be
equally strong their contributions t@ are different because of
the different exergonicity of transfer.

As seen from Table 2 even at relatively high the
contributions from the two upper states does not exceed 3%.
Therefore, they can be ignored in further investigation. Leaving
only the lowest excited-state, we arrive at the double-channel
model with the total rate

Wi(r) = Wo(r) + Wq(r) (4.15)

where
W, =WAG,, V,, L) and W, =WAG,, V,, L)

are given by the general Marcus formula (1.3) but with partial
arguments:

AG,=—2.14eV and AG,=—0.60eV
AG; is the free energy of transfer to the lowest excited level of
perylene cation (Figure 6.

In the double-channel model only, and V; should be
considered as fitting parameters. In fact, we have only a single

new parametety1/Vo, provided

ko= [TWy(r) + Wy(r)] d’r (4.16)

is kept equal to that in eq 4.5. After finding this ratio from the
best fit to the intermediate times, we adjusted &so get the
right slope of the longest quenching. The last procedure does
not affect too much either the short or intermediate time
behaviors which are kinetic and quasistatic in nature, that is,
weakly sensitive to particle motion. At the same time, an
inclusion of the excited-state production facilitates the near
contact quenching, making the fitting much better, provided

V,=123meV V,/V,=1.12 D=3.05x 10°cn¥/s
(4.17)

The results shown in Figure 8 are actually much better than
those achieved in Figure 7 with a single channel model.

The results of such a successful fitting allow specifying the
time development ok(t) at all times, from its kinetic value,
ko, up to the stationary ong; (Figure 9). The slope of thia(t)
dependence dt= 0 is the quantitative characteristic of the In
P(t) curvature. It is given by the mean square rate (2.8), which
is very sensitive to the shape of the particMafr) dependence.
For any remote transfer, it is finite but turnsctdfor the contact
ki(t) of Collins and Kimball:

1420

Ko

where kp = 4moD is the diffusional rate constanty =

V(DIo®)(1 + (ko/kp)) and

e“erfc(on/t) (4.18)

k() = cho'{
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TABLE 2
channels 0 1 2 3
Ki [A%ps] 273 42.3 7.21 0.211
Kilko [%] 84.6 13.1 2.23 0.07
14
0.1+
o
0.014
|6 2 4 6 s 100 120
1E-3 , r . : . )
0 200 400 600 800 1000 1200
Time, ps

Figure 8. The fitting of the double-channel model to the quenching
kinetics atc = 0.16 with the parameters given in eq 4.17.

350+

Time, ps

Figure 9. The double-channel “rate constaki(t) (red line) approach-

ing its stationary valuek;, shown by the dotted red line. The red dashed
line indicates the tangent to this curvetat 0 whose absolute value

is —ki(0) = W2(r)C This value for the multiphonon transfer (dasked
dotted blue lines) increases with= 0, 1, 3, and turns tee in the
contact approximation. The latter is shown by the black line approaching
its stationary valuek™" (dotted line).

on_ Koko
= 4.1
As seen from Table 3 for the double-channel model the value
|k/(0)] = W2s a bit smaller than for the single-channel model
that we failed to fit well. The latter can be considered as the
“zero-phonon” model$ = 0). In the next subsection, we will
demonstrate that for the multiphonon rat8s<1, 2, 3, ...) this
guantity even increases wifh to say nothing about the contact
model (W2(= o). This hierarchy is marked in Figure 9.

The double-channel rate (4.15) is composed from two
components (Figure 10). The transfer saturation by the dynamic
solvent effect reduces mainly the near contact one, which is
responsible for the transfer to the excited state. The relative
contribution of this component intd\20is even smaller due
to the statistical weight#r2. Conversely, the role of another
component responsible for the transfer to the ground state is
dominant and more the further it is from the contact. At
relatively slow diffusion, the outer branch of this component
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TABLE 3 multiphonon rates are placed between the latter and the contact
c=0.16 M double-channel single-channel one which hagW?0= o (see Figure 9). Therefore, in fitting
Vo(meV) 123 138 our data all multiphonon models are worse than the single-
Vi/Vo 1.12 0 channel one, let alone the double-channel model wib4&]
Wi2(A%ps) 29.6 32 = 29.6 A¥p< due to the most uniform rate distribution between
D > 10° (cr¥/s) g'gg 2.45-2.95 o and Rq. Judging from this criterion, we conclude that the
EQZ( 4)nRQD (A%ps) 316 doub!e-cha}nngl modell provjdes the ultimate explanation of the
ko = 40D (A¥ps) 19.2 transient kinetics obtained in our system.

Nonetheless, it is worthy of notice that the first experimental

' T ' evidence of the diffusional transfer at high exergonicity was
20+ 150+ . obtained by direct study of transient efféétéitted with the
multiphonon model. The obtained kinetic rate constégpts:
10'"—-10" M~1s7! were shown to be much larger than diffu-
sional ones (2x 10 M~1 s71) all over the RehmWeller
plateau, up tAAG; = — 2.2 eV. The attempts to explain this
fact theoretically were undertaken using the Collins and Kimball
contact approximatioPr5° Since[W2[l= o in this approxima-
tion, the transient kinetics could not be well reproduced. This
was not recognized as a significant drawback because the
measurements on the nanosecond time scale did not allow one
to study the kinetics in all the details, as we did. The
disadvantage of the contact approximation manifested itself only
T in the diffusion control limit. There the stationary rate constants

calculated with eq 4.19 were systematically smaller than the

rA real ones:kp = 4woD < 4RgD.

Figure 10. The rates of double-channel electron transfer with (red) Although both the transfer kinetics and the stationary rate

and without (k(“;]’e) tunnelifng satLIJ_ration (t:dy”amiCdS("‘ée”t ‘?ﬁegt_")- Their )constanki were fitted in refs 54 and 55 with the classical contact
components (the rates of tunneling to the ground and excited ion states : :

are shown by the dashed lines. The vertical dotted line indicates the quelf the 52|n7gle parame.tel'i of this mode), \Q{sals c;]a_lculated
quenching radiiRo. using in eq 2.7 an essentially noncont®g(r).>® In this way,

the authors carefully accounted for not only multiphonon
determines the quenching radiBs, as well as the long-time  transfer, but also for the dynamic solvent effect taking
asymptote of the rate constant (2.5) expressed through it. 1
It is of interest to compare the true valuelef= k() with ==5ps’ w=800cm* S=3
its contact estimate (4.19). Usirkg from Table 3 we have v

-
L8]
1

W (r)/10° ns”
3

w
1

12

con 3 The upper limit for the rate (1) as well asw are almost the
k"= 18.1 A/ps= 0.94k, = 0.056k,  (4.20) same as ours whil& is surprisingly large. Since the authors
did not care about th&\Vj2(values they admitted this choice.
These results clearly indicate that the ionization is very close  But the most important difference results from the intention
to the diffusional limit and rather far from the kinetic limit. In  to stretch the region wheig is larger tharkp, up to the highest
the latter casek(t) = ko should be the horizontal line shown in  exergonicity of transfer. To do this Kakitani et al. revised the
the same plot. The deep reduction of the rate constant with timecommon definition of the reorganization energy space depen-
is the clear manifestation of diffusional control over ionization. dence, presenting it in the following form:
On the other hand, under diffusional control one always has
Ro > o andk > K" According to Table 3Ry and ki are Mr)=A@-3r) atr>o=44A  (421)
almost twice as much as andk™" . -
D. Fitting the Multiphonon Model. There are at least four ;ani:ﬁgx?ng/\ and= gs fitting parameters they found for them
. . g values:
candidates for assistance of the electron transfer: two modes
of Pe: 800 and 3100 cm, and two of TCNE: 1100 and 2200 A=135eV and S=72A (4.22)
cm ! (see Figure 2S, Supporting Information). Choosing the
low-frequency ones, we compared in Figure 11 their shapes atBoth of them are noticeably larger than their analogues (4.7)
different electror-phonon interaction measured by parameter obtained from the available experimental data. Especially
Sof the multiphonon rate (1.10). All of them are normalized to surprising is tha& > ¢. This relationship allowd(r) to vary
ko = SW(r) d®. This value is fixed by eq. 4.5 while the rest of from 0.49 eV at contact, to 2.7 eV at infinite separation, while
characteristics change with The general conclusion is that the conventional formula (4.6) allows one only to double the
with growing S the rate maximum increases and shifts toward minimal value.
the contact. Approaching the contact is faster at a larger Such an unphysical stretching &fr) was taken but not for
frequency of the assisting mode. At= 1100 cn1! the rate the best fit of the high exergonicity transfer. As we ensured, it
maximum disappears &= 3 and the quenching, proceeding can be done without any variation of the conventional space
with quasiexponentialVi(r), is maximal at the contact. Figure dependence of, eq 4.6. The stretching was necessary to fit

12 demonstrates théi\Vi2Cmonotonically increases wit and with the same theory, the ascending branch of the Reivaller
the sharper, the higher the frequency of the assisting mode. Forfree energy dependence, where the transfer is endergh@ic (
the lowest two mode&\20grows almost linearly witts. > 0). In fact, the same objective was also pursued by other

At S= 0 any multiphonon rate reduces to a single-channel authors cited abov#:*>Unfortunately, it is unattainable. DET
one which has the minimalV20= 32 A3/p<. At larger Sthe used by all of them does not hold AG; = 0. DET is good for
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Figure 11. The rates of transfer accompanied by the vibrational excitation of Pe (left) or TCNE (right) at differe01 0.3, 1, 2, 3 in comparison
with single channel rateS(= 0).

" * * nzwzlj‘wp@e—ﬂfodtzﬁ(—o):;
14 4 . j;mN(t, 0) a Tp 0 Tp 1+ CICTD
124 * (5.1)

10+ Its “constant” is in fact the concentration-dependent function

«(c), but in the limit of small concentration it follows from the
concentration expansion of eq 5.1 wiift) from eq 2.1 that

[W?1/10" A’lns®

7=~ 1— CkyTp
double - channel

P , where

s ko= [V k() (5.2)
Figure 12. The S-dependence @#V?ifor the quantum modes of Pe )

(®, 800 cnT! and %, 3100 cnt?), and TCNE, M, 1100 cnT! and #,

2200 cnt?). is an “ideal” Stera-Volmer constant. As long as= ko = const

the original Sterr-Volmer law

high exergonicity ¢ AG; > T) when the backward transfer from 1 =1+ cktp (5.3)

ion pair to initial excited state is negligible, but DET is incapable

of accounting for the reversible electron transfer between the is linear in concentration of quenchers.

excited reactant® Accounting for the backward transfer However, the factual nonlinearity of eq 5.3 resulting from
requires a fundamentally different technique known as integral the «(c) dependence was many times demonstrated experi-
encounter theory (IET). It was employed for the ascending Mentally®®~%* We also illustrate it by Figure 13. To ggtone
(endergonic) branch of Rehaweller dependence in a few €an either use the Laplace transformation of the experjmental
recent works7:58 As was shown, not only the shape but the 9uenching kinetic(t) in eq 5.1, or employ the conventional
very position of the ascending branch depends on the relative Stationary "_‘eth"ds for the stralghtforwa_rd measuring of th_|s
strength of the radical ion pair recombination (after spin quantity. Using both these ways, we obtained the results which

ion in th in the bulk) to either the starti are in conformity with each other and with those resulting from
conversion in the cage or in the bu ) to either the starting the best theoreticd(t) obtained with the double-channel model
excitation or excited triplet product. The rate of the latter

) - ) =" and integrated in eq 5.1.
determines the position of the ascending branch which is Unfortunately, such a conformity is just an illusion: the
different f0r different families Of the reactants. ThIS was Ca”ed presenta‘tion Of data in these Coordinates masks the problem It
the “multiple Rehm-Weller plot” in ref 59 where it was s visualized if« is extracted fromy and plotted as a function
observed experimentally. At least “two different plots were of c. As seen from Figure 14 there is a pronounced difference
clearly observed corresponding to the aromatic and olefinic between the data obtained from the time-resolv@yand the
compounds”. This proves that fitting the data for particular stationary &) experiments, not to mention the accuracy of the
systems, endergonic or exergonic, is preferable to trying to find latter which leaves much to be desired at small The
a unique explanation for all of them together. coincidence is satisfactory only at the highest concentration
. where the quenching is accomplished within the credibility time

V. Concentration Dependence of the SteraVolmer interval and conversely it is the worst at the lowest concentration
Constant. The relative quantum yleld of the fluorescence is when the |0ng tail remains out of the interval available
generally defined through the system response to instantaneougxperimentally (see Figure 3A). The integration within such a
excitation (1.5) and presented in the form of the Stévnlmer limited time interval is equivalent to the sudden quenching of
law:3 all donors survived to the end of it. Therefore, the quenching
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Figure 13. The nonlinear SterVolmer law for the quantum yield
obtained by integration of the experimental quenching kinetics within
the credibility intervals @) and from the stationary measurements of

the quantum yield%). The theoretical approximation of this law with
the double-channel (red line) and contact (black line) models.

o
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Figure 14. The Sterr-Volmer constants obtained from the stationary
(%) and time-resolved data®] in comparison with the theoretical
predictions, following from the double-channel quenching kinetics
integrated over the credibility intervalBlf and up to infinite time (red
line). Black line: the similar result but for the contact kinetics integrated
over all times. Triangles (red and black): the ideal Stevolmer
constants for the double-channel and contact models.

constant at low concentrations is greatly overestimaté®{t)f
measured in an experimentally restricted time interval is
integrated in eq 5.1.

The same is true for the theoreticaif the integration of the
model P(t) in eq 5.1 is performed within the credibility time
intervals (). The coincidence of theoretical and experimental
results is good for low concentration and a bit worse for the
higher ones where the data are more noisy. However, it is in
the range of the low concentration that the overestimation of
takes place due to incomplete quenching within limited time
interval. Fortunately, the integration of the theoretiPé) in
eq 5.1 can be extended to infinity and this provides the most
reliable estimate of the quantity under study (red line in Figure

Gladkikh et al.

Volmer constant, and this effect increases with growing
concentration. In fact, the popular contact approximation is
inapplicable to electron-transfer reactions especially in the
inverted region.

The main tendency established in ref 65 and seen in Figure
14 is an increase af(c) from its “ideal” valuexo = «(0) to the
maximal one: k(o) = ky. This conclusion is sustained by a
number of different theoretical methods compared in ref 65.
All of them except DET deal with the contact approximation
(L — 0). In this approximation, the ideal Stetiolmer constant

was shown to be given by the following analytic expression:
66,68

koko

ko + ko/(1 + 4/0”ID1p)

Substituting into this relationship the correspondiggand D
values we obtain:

con
Ko

(5.4)

K" = 20.4 KJps= 0.527«, (5.5)

where
Ko = 38.8 Klps

was found from Figure 14 by extrapolation of the theoretical
curve toc = 0. It was known for very long that in some systems
even the ideal SterAVolmer constant measured experimentally
can be twice as large as its contact estinfatédmitting the
guenching radiuR to be twiceo, the discrepancy could be
understood in the framework of the extended contact th&ory.
The latter differs from the original CollirsKimball model only

by substitution oR = o/u for o, where the numerical parameter
u can be rigorously defined throughi(r), but only near the
kinetic limit (1 — « < u).2 However, such a phenomenological
extension of the contact model completely ignores the static
guenching and is not applicable to true diffusional quenching
(R — o =2 0), especially at high concentrations.

On the contrary, the present theory accounts for remote
transfer as it is. Some uncertainty is left only for the value of
the tunneling length.. It may be a bit larger or smaller than
= 1.24 A yet employed. The best way to eliminate such an
uncertainty is to repeat the investigation in a number of solvents
of different viscosities as has been done already a few ti#fes.
Varying the encounter diffusion coefficiebt one can specify
the Ro(D) dependence which is sensitive to the model of the
transfer rate and especially to thevalue.

As follows from comparison of egs 5.4 and 448" > k"
in the diffusional limit, because the SterWolmer constant
accounts for nonstationary quenching whiledoes not. The
same is true for the noncontact values of the same constants:
Ko > ki (compare egs 5.2 and 4.11). Sinde) > «o > ki > k™"
the fitting of the RehmWeller «(AG;), with the theoretically
calculatecki(AG;) and especially with™(AG;) dependence is
inconsistent. Although performed in almost all published works
it is incorrect in principle, but especially bad in the region of
the diffusional plateau. On the other hand, the valueg Af5;)
obtained and plotted without experimental control on quencher

14). We see that this estimate made with the double-channelconcentrations can differ noticeably from what they are expected

model is in rather good agreement with the experimental results,

unlike the contact estimate of(black line) obtained in the same
way with the Collins-Kimballk(t) from eq 4.18. As has been

to be, that is, from the ideal(AG;) dependence.

VI. Conclusions

already demonstrated with Stevens data (see Figure 4 in ref 65), We present the first successful fitting of the entire kinetics

the contact approximation greatly underestimates the Stern

of fluorescence quenching carried out by remote electron transfer
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in the inverted region. Our study covers three different time 30§12) Tunitskii, N. N.; Bagdasar'yan, Kh. ®pt. Spectrosc1963 15,
scales studied with the appropriate techniques. It starts from <> . - . .
the initial accumulation of excitations during the action of the 19((323)16}?'2?6?' F-i Mikhelashwill, M. S.; Rozman, I. NOpt. Spectrosc.
light pulse, extends to a quasistatic electron transfer, and ends (14) Vvasirev, I. I.; Kirsanov, B. P.; Krongaus, V. Kinet. Katal.1964

by the final quasistationary quenching. 5 792. _

We proved that the simplest single-channel Marcus rate, as 823 gtoell?g’r%r\? kzé'_Kg‘Jfgﬁzﬁly' AB'|SC£thyF;h)ssé?gfg‘71§ ffog‘ﬁ
well as its multiphonon analogues, do not allow fitting  (17) wilemski, G.; Fixman, MJ. Chem. Phys1973 58, 4009.
satisfactorily both the initial and the final stages of quenching.  (18) Eads, D. E.; Dismer, B. G.; Fleming, G. R.Chem. Phys199Q
This can be done only with the double-channel model of transfer 93, 1136. _ ) _ )

(to the ground and excited electronic state of charged products).gs(‘};‘?5 y“rata' S.; Matsuzaki, S. Y.; Tachiya, M. Phys. Chem1995
Taking_ into account the saturati_on (_)f the tunneling_due to _the (20) Szabo, AJ. Phys. Chem1989 93, 6929.

dynamical solvent effect and having in hand an additional fitting ~ (21) Dorfman, R. C.; Lin, Y.; Fayer, M. DJ. Phys. Chem199Q 94,
parameter (the relative strength of the two channels), we fitted 8007. . . .

satisfactorily the whole kinetics of quenching. Besides, the Chgn%)lggi‘%s'-égi”ma”' R. C.; Swallen, S. F.; Fayer, M.DDPhys.
experimentally found concentration dependence of the Stern (23) Song, L.: Swallen, S. F.; Dorfman, R. C.; Weidemaier K.; Fayer
Volmer constant was well fitted with the same double-channel M. D. J. Phys. Chem1992, 97, 1374.

model and the same fitting parameters. Using this model, the (24) Kakitani, K.; Matsuda, N.; Denda, T.; Mataga, N.; Enomoto, Y.

. . Ultrafast Reaction Dynamics and $eht EffectsAIP Conference Proceed-
?uan;um yleldsI of the .g?.ro(;md and excited-state products of ings 298; Gauduel, Y., Rossky, P. J, Eds., New York, 1993,
ransfer were also specified.

(25) Burshtein, A. 1.; Kapinus, E. I.;. Kucherova, I. Yu; Morozov, V.
Two important conclusions follow from this investigation: ~A. J. Luminesc1989 43 291.

: ; S i ; p (26) Tavernier, H. L.; Fayer, M. DJ. Chem. Phys2001, 114, 4552.
Cof’llirc-:—lr]eed et)r;e(rj?f)f/ugil:)er]nchlng by TCNE in liquid solutions is (27) Allonas, X.; Jacques, P.; Accary, A.; Kessler, M.; Heisel JF.

Fluoresc.200Q 10, 237.
(ii) This is essentially distant, noncontact quenching. (28) Tavernier, H. L.; Kalashnikov, M. M.; Fayer, M. D. Chem. Phys.
i ; i 200Q 113 10191.

| These cd(_)nclu3|on§ pr.OV\I/(\jlﬁ th.e ugarq%?\lljéug a'r\]z)vlver to the (29) Angulo, G.; Grampp, G.; Neufeld, A. A.; Burshtein, AJl.Phys.
ong stan Ing queStlon. . y Is the te mer Chem. A2003 107, 6913.
constant placed on the diffusional plateau of the famous free  (30) Rehm, D.; Weller, Alsr. J. Chem197Q 8, 259.
energy gap law of Rehm and WelR€instead of being far below (31) Efrima, S.; Bixon, M.Chem. Phys. Lettl974 25, 34.
it as was expected? In addition, the true value of the TCNE g%g JB‘l’Jrrth‘]*tre'ii-? f":‘?”ko'\f"rﬂ]é ﬁhimégﬂgiggi 85% 917%7-40 289
Stern—Volmer constant is at least twice as large as obtained in . o Y 5 2ac

) ) A - . . (34) Yakobson, B. I.; Burshtein, A. Chem. Phys198Q 49, 385.
the contact approximation and this difference increases with  (35) zusman, L. DChem. Phys198Q 49, 295.

concentration. These facts show that the contact approximation  (36) Burshtein, A. I.; Morozov V. AChem. Phys. Letl99Q 165, 432.
is just a convenient method of analytic calculations, but not a  (37) Zharikov, A. A; Burshtein, A. 1J. Chem. Phys199Q 93, 5573.

- - (38) Rips, I.; Jortner, JJ. Chem. Physl987 87, 6513.
proper tool for fitting to the real experimental data on transfer (39) Walker. G. C.: Akesson, E.: Johnson, A. E. Levinger, N. E.:

kinetics, especially under diffusion control and at high concen- garbara, P. FJ. Phys. Chem1992 96, 3728.
trations of quenchers. (40) Burshtein, A. I.; Doktorov, A. B.; Kipriyanov, A. A.; Morozov, V.
A.; Fedorenko, S. GSa. Phys. JETPL985 61, 516.
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The recombination dynamics of ion pairs generated upon electron transfer quenching of perylene in
the first singlet excited state by tetracyanoethylene in acetonitrile is quantitatively described by the
extended unified theory of photoionization/recombination. The extension incorporates the hot
recombination of the ion pair passing through the level-crossing point during its diffusive motion
along the reaction coordinate down to the equilibrium state. The ultrafast hot recombination vastly
reduces the yield of equilibrated ion pairs subjected to subsequent thermal charge recombination and
separation into free ions. The relatively successful fit of the theory to the experimentally measured
kinetics of ion accumulation/recombination and free ion yield represents a firm justification of hot
recombination of about 90% of primary generated ion pairs. © 2005 American Institute of Physics.

[DOL: 10.1063/1.2140279]

I. INTRODUCTION

Most theories of electron transfer reactions in condensed
media, reviewed in Refs. 1,2, incorporate as input data the
thermal transfer rates between reactants separated by a dis-
tance r. These rates are controlled either by the tunneling
near the intersection point of reactant and product levels or
the system delivery to this point from the equilibrium posi-
tion. It is usually assumed that the system motion along the
reaction coordinate g proceeds faster than the modulation of
the interparticle distance r by encounter diffusion and that
the transfer always starts from the equilibrium position in the
reactant well. If one of these conditions is violated, the en-
counter theory has to account for the occurrence of the pro-
cess along r and ¢ simultaneously. This has been done once
for a diffusion-controlled thermal ionization competing with
the diffusion along the reaction coordinate.” In the present
work, we consider the geminate recombination of ion pairs
produced by bimolecular photoinduced electron transfer
(ionization). The backward electron transfer proceeding be-
fore thermalization, known as “hot recombination,” does not
need any thermal activation and is therefore more efficient
and much faster than the subsequent thermal recombination
that conventional theories are confined to.

The chemical system investigated here consists of
perylene (Pe) in the first singlet excited state as electron do-
nor in the presence of tetracyanoethylene (TCNE) in aceto-
nitrile. The fluorescence quenching dynamics of Pe after ex-
citation by an ultrashort optical pulse was recently studied
both experimentally and theoretically.4 It was concluded that
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YElectronic mail: physic@vlink.ru
9Electronic mail: eric.vauthey @chiphy.unige.ch
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the electron transfer quenching results to both the ground and
the excited state of the ion pair with the rates W and W,
respectively,

s

Wi * i *
Pe*TCNE™«+Pe” + TCNE—Pe* TCNE".

Using the abbreviations, D for Pe and A for TCNE, we con-
sider a four-level energy scheme (Fig. 1) including vibra-
tional sublevels (=0, 1, 2, ...) of the DA and D*A" states.
According to this scheme, both the excited and the ground
channels of ionization-recombination include hot transitions.
These two ionization channels are depicted separately in Fig.
2. It is useful to introduce the probabilities & and a” to pro-
duce equilibrated ion pairs through the ground and the ex-
cited channels, respectively. These pairs recombine thermally
to the neutral ground state.

The overall reaction scheme includes the recombination
of charged products assisted by vibrational and solvent relax-
ation. After the forward electron transfer generating the ion
pair in the ground state, the population moves down diffu-
sively and crosses a number of vibronic sublevels of neutral
products before reaching the equilibrium. A fraction 1 -« of
the ion-pair population recombines during this stage, i.e.,
prior to thermalization, which is approximately equal to the
time scale of the longitudinal solvent relaxation 7;. The re-
maining fraction of the ion-pair population (@) reaches equi-
librium and recombines thermally with a rate Wy, [see Figs. 1
and 2]. The fate of the excited ion-pair population is more
complex [see Fig. 2]. These ion pairs are born near contact,’
at a distance where electron transfer (either forward or back-
ward) is essentially limited by the solvent relaxation (1/7;).
These ion pairs undergo charge recombination to one of the
vibrational states of the neutral products (dotted levels in
Fig. 1) with approximately this rate. This is followed by the

© 2005 American Institute of Physics
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FIG. 1. Ground and excited electronic states of the reactants, DA and DA,
and charged products, D*A~ and D*"A~, at contact distance. The dotted lines
represent vibrational excited states (n=1, 2, 3); the crossing points for for-
ward transfer are marked by circles (O) and for backward transfer by bullets
(¢). The arrows show the direction of the intramolecular vibrational
relaxation.

even faster intramolecular vibrational relaxation to the neu-
tral ground state. Afterwards, this neutral population passes
diffusively through the lowest crossing point with the
charge-transfer states where a fraction @ converts back to
the ion pair in the ground state. This ion-pair population
undergoes equilibration and thermal recombination with a
rate Wy. Therefore, the equilibrated ion-pair population,
which recombines thermally, consists of the fractions a and
a" of the primary ion-pair populations generated by the par-
allel pathways [(A) and (B) in Fig. 2], with hot recombina-
tion taking place earlier.

The dynamics of hot-electron transfer at a fixed interpar-
ticle distance has been extensively studied with the nonequi-
librium generalization of the golden rule formula.>® As the
transfer was assumed to be limited by weak electronic cou-
pling, the hot transfer yield was very small. In the limit of
weak transfer, almost all the neutral ground-state population
originating from the recombination of excited ion pairs un-
dergoes complete equilibration, i.e., a <1, Similarly, the hot
charge recombination of the ion pairs formed in the ground
state D*A~ is almost insignificant, i.e., = 1. As a result, this
equilibrated ion-pair population is the product of forward
electron transfer with the rate W; and should represent 89%—
96% of the total quenching product. However, the opposite
result was found experimentally:7 Only 10% of the quench-
ing product ends up as equilibrated ion pairs. This indicates

D*A w, D* A VVI*
—_— B —
W,* | D*A-
e ——
hot R
1-o W hot |
2n *
o W, o %
W, w,

-— > D+ A- -7

D+A~ D+*A
DA DA

A) Ground state ionization channel
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that hot recombination is efficient and should thus be better
described with a stochastic approachg’9 than with perturba-
tion theory. When the reaction is limited by the diffusion to
the crossing point rather than by the electronic coupling, this
approach allows a<<1 to be obtained. This is the so-called
dynamic solvent effect (DSE) regime realizing at the highest
friction. It was first studied in the Marcus normal
regiong’l(HS and opposed to the other regimes (of moderate
and low friction) in a few reviews.'®!” Later on the same
analysis was done also for the Marcus inverted region where
DSE takes place as well.'®

The simplest version of a stochastic theory accounting
for the DSE was first developed in Ref. 19. It neglects the
reversibility of the transfer in the crossing point, because of
the instantaneous decay of the transfer product and thus re-
duces the problem to a single level with a sink. A similar
approach to the problem was applied in Ref. 20 and then in
Ref. 21. There is, however, no necessity for such a simplifi-
cation. Using the most general stochastic approach to the
problem, the reversible transfer between three intersecting
levels, D*A, D*A™, and DA, has been studied in Ref. 22. The
arrangement of the energy levels in the case E of Fig. 4(a) in
Ref. 22 is exactly the same as in Fig. 1. In the case of fast
transfer, the kinetics of ion-pair decay consists of a fast hot
recombination and a subsequent much slower thermal
recombination.?? Perturbation theory holds only in the oppo-
site limit of the weak transfer where the hot stage is almost
eliminated [Fig. 4(b) of the same work]. The relationship
between stochastic and perturbation theories has been inves-
tigated in more detail in Ref. 23. In this work, the analyti-
cally estimated « value was shown to change from 0 to 1
when the transfer in the intersection point becomes more
efficient.

In the following, only the results of the last two
paperszz’23 will be used. They will be incorporated in the
unified theory (UT) of irreversible photoionization and re-
combination, which accounts for the r dependence of all
electron transfer rates and the encounter diffusion of the
counterions in a Coulomb well." As the original UT (Refs.
24,25) deals with thermal electron transfer only, it will be
generalized to account for hot recombination prior to equili-
bration.

Il. EXTENDED UNIFIED THEORY

Using a general approach, we consider a set of energy
levels accounting for the electronic states and their vibra-

FIG. 2. Energy-level schemes illustrating the two chan-
nels to the thermalized ion pairs. The grey areas stand
for the nonthermalized levels while the wavy arrows
represent vibrational and/or solvent relaxation.

> D+ + A-

B) Excited state ionization channel
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tional sublevels®® involved in the overall reaction scheme
[Figs. 2]. All energies are assumed to have a quadratic de-
pendence on the solvent coordinate ¢,

2 2
q (n) (4_2)\)
UDA—K UD+A_=T+AG1+nﬁQ,
(CI_Z)\)Z *
UD*'*A_:TJFAGI’ (1)

e
UDA = R +AG;+ AGy + nhif),

where AG;<0 and AG; <0 are the free energies of the pri-
mary ionization and of the subsequent charge recombination
to the ground state, respectively, AG: is the free energy of
electron transfer to the excited ion pair (Fig. 1), \ is the
solvent reorganization energy, {1 is the frequency of intramo-
lecular vibrational mode, and # is the Planck constant. The
index n stands for the nth vibrational sublevel of the appro-
priate electronic state.

As the relaxation of the high-frequency modes of the
excited reactant is assumed to be much faster than all the
electron transfer reactions considered, and as #{)> kT, the
vibrational excited states are not included in Up+,. Moreover,
since the transition between Up+, and Up++4- proceeds in the
Marcus normal region, the vibrational excited sublevels of
the latter are not considered as well.

The reaction scheme [Figs. 2] shows the two pathways
associated with the forward electron transfer to the ion-pair
ground state D*A™ and to the ion pair in the excited state
D*"A~. These processes occur at the term crossing points q1
and q;, where Upa(g\")=Uy., (a") and Up(q))
=Up+s-(q)) (Fig. 1), that is, at

@ =N+ AG,+nhQ, ¢ =\+AG]. (2)

Similarly, charge recombination from the ground and excited
ion states takes place at the crossing points q ) and qz(")
(Fig. 1), where the energies of the D*A™ and D+‘:A states are
equal to those of the DA state, respectively, that is, at

g =\ = AGg - nhQ,

. (3)
"™ =N+ AG) = AG;— AGy — nhQ).

It is also seen from Fig. 1 that the crossing points ¢, ™ lie to
both the left and the right of ¢, ), so the index n in the
equation for q(") may be either positive or negative.

The positions of all crossing points depend implicitly on
r because

A(r) = N\o(2 - ofr) 4)

depends on the inter-reactant distance. In acetonitrile the
contact reorganization energy is taken as

No=1.15 eV, (5)

and the average contact distance between Pe and TCNE is
o=5A*

J. Chem. Phys. 123, 244510 (2005)

The bimolecular forward electron transfer (ionization) is
universally described by the differential encounter theory

(DET) equattions,l’%25

N=—ck,(t)N(t) - N(t)/ 1p, (6)

where c=[A]=const and N(t)=[D"] is the survival probabil-
ity of the excited donor, provided that initially N(0)=1, k()
is the time-dependent rate constant of ionization, and 7, is
the lifetime of the excited donor in the absence of quencher.

In the original formulation of DET, k() is the average
product of the thermal ionization rate W,(r) and the pair dis-
tribution function of the reactants n(r,t).1 To account for
dynamic solvent effects, we extend the coordinate space to
include the solvent coordinate g as follows.’

kl(t) = f WI(’”,C]) V(r’q’t)dq dSr’ (7)

where w; is the r- and g-dependent rate of ionization and
u(r,q,t) is the distribution function of the DA pairs in the
extended coordinate space. The latter obeys the following
equation:3

av(r,q,t)

p =—w/r,q)v(r,q,t) + (lA)+I:)V(r,q,t), (8)

where the operator of encounter diffusion of the neutral re-
actants is

r, )

D being the encounter diffusion coefficient, and

LS PR (10)
=—|1l+g—+ —
nl Tlag T o
is the diffusion operator in the solvent coordinate g. 7; is the
longitudinal dielectric relaxation time of the solvent.

Since there are several parallel channels of ionization at
the points q(]") and q}k, the total rate w,(r,q) is

wi(r.q) = 2w (r.q) + w;(r,q)

2 r
—E 7TV"'()é(q q\"(r))
27V}
LA ) an

where V,(r) and Vj(r) are the electronic coupling constants
between the DA and D*A~ states and between the D*A and
D*"A™ states, respectively. The quantity V3 (r) includes the
Franck-Condon factor for the vibrational transition 0 — n,

-S;qn

e1S
Vi) = Vi =7, (12)
where S;=N;/fi{), \;; being the reorganization energy of

intramolecular vibrational mode for the electron transfer
processes from D*A. The electronic coupling constants V(r)
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and V;(r) are assumed to decrease exponentially in r space
with the characteristic decay length L,

Vi(r) = Ve = yi(r) = Ve ot (13)

The accumulation and decay of the ion pairs produced
by ionization can be studied within UT (Ref. 1) after its
proper generalization. We first introduce the distribution
functions in the extended coordinate space w(r,q,r) and
,u*(r,q,t) for the ion pairs in the ground and excited states,
and 7(r,q,t) for the neutral pairs in the ground state DA.
The time evolution of these functions obeys the following
diffusion equations:

Jd
S NG+ S i S i
n

n=<0 n=0

+ (Dcs + LCS)/”L’ (14a)
Jd ) * * * * N r *
a—/j = WIN(I)V+ WR(0)7T— E WR(n)M + (Dcs + Lcs)/'l’ ’

n=0

(14b)

Jam * * ®
— =+ 2wl 2w+ 2w

at n=0 n=0 n=0

+(D+L)m, (14¢)

with
~ D 0 J
_ 29 o Ut ? UkgT

D= 2 &rr e B é’re B, (15)
R 1 J P
Le=—|1+(g=2N)—+2\kpT— |, (16)

7L dq dq

where U (r)=—e?/&(r)r is the Coulomb potential accounting
for the spatial dispersion of the dielectric constant.

In Egs. (14), the recombination rates wg')(r,q) and
w;(")(r,q) through the ground and excited channels are

27Va (r)

Wi = == 8lg = g8 (), (17)

) 27V (r) o)

Wp = A 5(61_512 (r), (18)
with

—Spqn
e RSy

Via(1) = V(N —F,
n:

(19)
where Sp=N\;z/h{), \;z being the reorganization energy of
the intramolecular vibrational modes for the charge recombi-
nation processes to the neutral ground state. The r dependen-
cies of the electronic coupling constant for charge recombi-
nation are

V(r) = Ve R V() = Ve =0k, (20)

Equations (8) and (14) should fulfill the boundary
conditions'

J. Chem. Phys. 123, 244510 (2005)

0 2 ’t .
gD 6 i (g =0, (21a)
ar r=o q—rx®
a s 7t .
4D i g =0, (21b)
ar r=c q—x®©
A (r,q,t
gDl 0 i (g =0, (21c)
ar r=c q—x®©
a 9’ 7t .
ImMr gD | 0 i (g =0, (21d)
ar r=o q— x>
and the initial conditions
1(r,q.0) = ¢,(q) = (47\T)"" exp(- ¢*/4NT), (22)
u(r,q,0) = ,u*(r,q,O) =(r,q,0)=0. (23)

The total amount of ion pairs surviving at time ¢ is cal-
culated as a sum

P,(1)= P(1) + P(1), (24)

where

P(H)=c J d’r f ulr.q,0)dq,

P'()=c f d3rJ w (r.q.t)dq (25)

are the populations of the ground and excited ion pairs, re-
spectively.

It is also useful to introduce the r distributions of D*A~
and D*"A~ pairs initially produced through the ground- and
the excited-state channels m(r) and m"(r),

m(r) = f mdt N(1) f dg 2w\ (r.q)v(r.q.1), (26a)
0 n

m*(r) = J"’ dt N(t) J dg w;k(r,q) v(r,q,t), (26b)
0

where v(r,q,t) and N(r) obey Egs. (6) and (8).

Equations (6)—(24) provide a formal basis for the theory
of ionization and geminate recombination accounting explic-
itly for hot transitions. This model was investigated numeri-
cally using a simulation algorithm given in the Appendix.
The results of the simulation are presented in the next sec-
tion.

lll. REPRODUCING THE KINETICS OF QUENCHING
AND CHARGE RECOMBINATION

Two independent sets of experimental data have to be
reproduced: (1) the time dependence of the excited-state
population N(f) and (2) the time dependence of the ground-
state-ion pair population P(r).” Since the parameters for
charge recombination do not affect the ionization dynamics
in Eq. (8), we will follow Ref. 4 and start with the fitting of
N(t). Below we present the results for ¢=0.32 M only,
though analogous results are obtained for ¢=0.16 M as well.
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The following fixed parameters were used:* AG=-2.14 eV,
AG;=-0.6 eV, AG=-0.69 eV, Q=0.1 eV, L;=1.24 A, and
Tp=4.34 ns. On the other hand, the parameters V/, Vf, S}, and
D were adjusted.

A remark concerning the choice of the solvent relaxation
time 7; should be added. Like the other solvents, acetonitrile
exhibits non-Markovian polarization relaxation dynamics,
which is usually described in terms of several solvent modes
with different relaxation times. Acetonitrile is characterized
by at least two modes with an ultrafast inertial mode having
a relaxation time 7;= 0.2 ps and a slower Debye-type mode
with 7,=0.5 ps.27 Only the latter mode was taken into ac-
count because, with the energetic parameters adopted here,
the hot transitions predominantly occur when the relaxation
of the fastest mode is over and before the slowest mode has
started. Of course, the Markovian approach used in this pa-
per can only yield a limited precision of the description.

The strategy for choosing the best-fit parameters was the
following. In the ionization kinetics, several regimes, which
are controlled by different parameters, can be distinguished.
The quenching at early time proceeds at the kinetic regime
and can be well described with a rate constant ky=k,(=0).*
At this stage, the initial equilibrium distribution of reactants
in both ¢ and r spaces is assumed not to be perturbed. This
quantity can be calculated using Eq. (7) with v(r,q,0) deter-
mined by Eq. (22). Its value ky=322.6 A3/ps was found ear-
lier from the best fit of the short-time kinetics in the 0—6.5 ps
interval.* The Vi, Vf, and S; parameters able to reproduce this
ko value were then chosen. This allowed the reduction of the
number of independent parameters. At longer times, the
quenching is controlled by the diffusive delivery of the reac-
tants to the ionization zone. In this regime, the role of D is
dominant, and its value can be determined rather precisely
from the analysis of the dynamics of the excited-state popu-
lation N(7) in the 0.2-1.2 ns interval (see Fig. 3 of Ref. 4).
The excited-state population dynamics measured in an inter-
mediate time interval (1-300 ps) was used for the determi-
nation of the other parameters.

A. Double-channel ionization model

A few sets of parameters, which can be considered as
candidates for the best fit of quenching kinetics, were found.
At least two of them reproduce the experimental data of Ref.
4 quite well.

The first set of parameters is the same as that found in
Ref. 4 within the framework of the DET. These parameters
are

V,;=0.123 eV, V,=0.138¢V, S;=0, D=3.05
X 107 cm?/s. (27)

Figure 3(a) shows that the excited-state dynamics N(r), cal-
culated earlier in Ref. 4, can be well reproduced with these
parameters.

This close agreement between our results and those ob-
tained within the original DET is not surprising. Because
ionization through the ground channel occurs in the far
Marcus inverted region, the ion pairs should be predomi-
nantly formed at relatively large inter-ionic distances. This is

J. Chem. Phys. 123, 244510 (2005)
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FIG. 3. Best fit of the ionization kinetics at c=0.32M and reported in Ref. 7
(dots) using the double-channel model (A) and the multichannel model (B).
The best-fit parameters are given by Eqgs. (27) and (28), respectively.

illustrated by the m(r) dependence shown in Fig. 4(a). Since
the electronic coupling at such distances is very weak, ion-
ization proceeds mostly as a nonadiabatic reaction and does
not violate the thermal distribution over the reaction coordi-
nate q.

B. Multichannel ionization model

A rather good fit of the ionization kinetics N(#) to the
experimental data [see Fig. 3(b)] was achieved with the fol-
lowing parameters:

V,=0.048 eV, V,=0.057¢eV, S;=2, D=3.95
X 107 cm?/s. (28)

Since S$;=2, the forward electron transfer proceeds through
several vibrational channels at q(l"). This changes consider-
ably the energetics of ionization and decreases the electronic
coupling constants V; and V;. The vibrational sublevels
lower the effective activation barrier of ionization, shifting
the reaction closer to the contact distance r=o. The distance
distribution of the ion pairs produced by ionization is pre-
sented in Fig. 4(b). In this case, a somewhat larger value of
the diffusion coefficient D was used to reproduce the ob-
served dynamics at long time scale.
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FIG. 4. Distributions of ion pairs generated in the ground state D*A~
(dashed lines) and the excited state D**A~ (dotted lines) as a function of the
separation distance m(r) and m"(r): (A) double-channel model with param-
eters given by Eq. (27) and (B) multichannel model [Eq. (28)]. The solid
lines are the overall ion-pair distributions.

One remark concerning the sensitivity of the numerical
curve N(r) to a particular choice of the fitting parameters
needs to be added. Since the efficiency of the excited-state
ionization channel is considerably lower than that of the
ground-state one, the ionization kinetics is weakly sensitive
to the magnitude of V;, and therefore the uncertainty on this
value obtained from the fit is rather large. On the other hand,
a variation of the other fitting parameters within 5% leads to
a noticeable degradation of the fit.

C. lon-pair accumulation-recombination kinetics

For the fitting of the ion-pair kinetics P(¢) to the experi-
mental data, the best-fit parameters in Eq. (27) or alterna-
tively in Eq. (28) were used as input data and only the quan-
tities Vp, V;, Lg, and Sp were adjusted.

With the parameters from Eq. (27), a rather good fit of
P(1) to the experimental data in the 80-500 ps time window
was achieved [Fig. 5(a)]. It shows that the equilibrated ion-
pair population never exceeds 11% of the primary quenching
product population P,(¢). The reason is that most of the ini-
tially produced ion-pair population undergo ultrafast hot re-
combination after their birth at the g, point. This conclusion
will be confirmed in the next section by the direct estimation
of hot transition probability.
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FIG. 5. Best fit of the ion-pair accumulation/recombination kinetics mea-
sured with ¢=0.32M and reported in Ref. 7 (dots) using the double-channel
model (A) and the multichannel model (B). The solid lines are the numerical
results obtained within the original model [parameters of the fits are given
by Egs. (29) and (30)], while the dashed lines are the same results but
accounting for D(r) and e(r) dependencies with A=1.6 A (Vz=V,
=0.15 eV, for the double-channel model, and VR=V;=O‘O75 eV for the
multichannel model).

The free ion yield P(e) measured independently by pho-
toconductivity is even smaller and amounts to 6%." This
number was used to relate the experimental time profiles of
the transient absorption, given in the same work in arbitrary
units, to the absolute ion yield. A good fit of the double-
channel model [Eq. (27)] at long times was obtained with the
following set of parameters:

Ve=0.165¢eV, V,=0.165eV, Sg=3, Lg=22A.
(29)

These values are in relatively good agreement with those
found in the literature. In particular, the contact values of the
electronic coupling constant Vj and V; are comparable with
those found in a few independent studies on exciplexes (con-
tact ion pairs). Values between 0.11 and 0.13 eV and between
0.15 and 0.4 eV are reported in Refs. 28 and 29, respectively.

The fit of the multichannel model to the ion-pair kinetics
P(t) using the ionization parameters given in Eq. (28) is
presented in Fig. 5(b). The best fit was obtained with the
following set of parameters:
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Ve=0.093 eV, V,=0.093eV, Sg=3, Lg=22A.
(30)

Since the ion pairs are produced at closer distance than in the
double-channel model, efficient hot recombination can be
achieved with smaller electronic coupling constants Vj and
Vi

It should be noted that the recombination dynamics at
relatively short times <80 ps could not be reproduced.
However, a rather good fit was obtained at moderate times
80 ps<t<<500 ps. Finally, the simulations at long times ¢
>500 ps predict a slow decay of the ion-pair population due
to the diffusion-assisted geminate recombination, while the
experimentally observed population remains constant.

The ion-pair population dynamics is determined by the
competition between production and recombination. The dis-
crepancy at short times can be due to either an underestima-
tion of the ion production or an overestimation of the ion
recombination.

The approach used here is only applicable if the elec-
tronic transitions are essentially nonadiabatic. It implies that
the single crossing of the nonadiabatic transition region re-
sults in a small transition probability hence electronic cou-
pling V must be sufficiently small. The DSE regime is a
consequence of multiple crossings of the nonadiabatic re-
gion. A thorough discussion of the physical mechanisms of
the friction influence on the criteria for nonadiabaticity was
given in Refs. 16,17. The applicability domain of the sto-
chastic approach for the parameters obtained in this paper
may be roughly estimated as V= kBT.3 % Too large electronic
coupling were obtained with the double-channel model (S;
=0) as shown by Egs. (27) and (29). In this case, the adia-
batic corrections can be considerable. However, much
smaller values have been obtained with the multichannel
theory (§,=2):V=0.048-0.093 eV [Egs. (28) and (30)]. The
effective electronic coupling between vibrational sublevels is
even smaller than these values by the square root of the
Franck-Condon factor as indicated by Egs. (12) and (19).
Therefore, the short-time discrepancy cannot be ascribed to a
nonapplicability of the model.

As noted above, acetonitrile exhibits a non-Markovian
polarization relaxation dynamics. The presence of several re-
laxation components can affect the ion-pair population dy-
namics especially at short times.>" This requires further in-
vestigation.

The fit to the experimental data at short times could also
be improved by taking into account a nonuniform distribu-
tion of inter-reactant distances. This is reasonable if D and A
form weak complexes with a coupling energy of the order of
kgT. In this case, the number of excited donors with a
quencher at contact distance is increased, and the electron
transfer rate at early time becomes substantially faster.

The influence of the spatial dispersion on the ion-pair
accumulation-recombination kinetics is considered in the
next section.
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D. Influence of the spatial dispersion of diffusion
coefficient and dielectric permittivity on the ion-pair
dynamics

The encounter diffusion at large separation differs from
that at the closest approach distance where the structure of
the few first solvent shells should be taken into account. This
can be done phenomenologically by assuming that the diffu-
sion coefficient is r dependent and becomes smaller at

shorter distances,32
o-r
A e
N

where o, is the diameter of a solvent molecule, which
amounts to 3.62 A for acetonitrile, and D is the conventional
Fick diffusion coefficient at infinite separation. The actual
diffusion coefficient at contact distance is predicted to be
about twice as small. The probability for the charge recom-
bination of ion pairs born out of the recombination layer is
reduced because their penetration into this layer is slower. A
similar effect can be obtained in more viscous solutions by
decreasing the Fick diffusion coefficient. In such a diffusion-
controlled recombination, observed a few times
experimentally,l’33 the rate decreases with increasing
Viscosity.3

If the spatial dependence of D(r) is taken into account,
the spatial dispersion of the dielectric constant €(r), which
affects recombination in the opposite direction, should not be
ignored. The spatial dependence of the dielectric constant
results from the nonlocal screening of the Coulomb
potential.35’36 The simplest model accounting for the absence
of screening at short distances is®

1
D(r)= D{l - 5exp<

€
"1+ (eley—1)yexp(-r/A)’

e(r) (32)

where €,=2 is the optical dielectric constant, € is its static
value in the continuum, A is a fitting parameter, and y
=2(A?/0?)(cosh(a/A)-1) is the correction for the excluded
volume of finite-size particles. If this effect is included in
U.(r) appearing in Eq. (15), the Coulomb well becomes
deeper,

2

Udr)= e(eT)r (33)

This potential is characterized by a sharp feature near con-
tact, which looks like an additional narrow and rather deep
well. It originates from the same Coulomb attraction but is
not screened by intercalated solvent molecules. The deepen-
ing of the Coulomb well accelerates the drift of ions toward
the region of maximum recombination rate, and thus this
latter process is enhanced. The depth of this well can be
adjusted by the independent parameter A.

Accounting for the spatial dispersion of both €(r) and
D(r) improves the fitting of the kinetics P(¢) in the interval
30 ps<r<<80 ps (dashed lines in Fig. 5), but at long time
scale the ion state population is still underestimated. For a
further improvement of the theory, the chemical anisotropy
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of the reaction, which makes all the rates angular dependent
and affected by the rotational diffusion,37 should be taken
into account.

E. Internal conversion of the excited ion pairs
and free ion yield

In the simple scheme shown in Fig. 1, the potential of
the excited ion pair is not displaced horizontally relative to
that of the ground state. Since these two potentials do not
cross, the electron-vibration interactions are actually absent.
Thus, the straightforward transformation of electronic energy
of the ion pairs into vibrational energy, followed by vibra-
tional relaxation, is totally ignored. In reality, the two poten-
tials are displaced, and internal conversion can efficiently
compete with the above-considered mechanism of double
electron transfer, namely, charge recombination of the ex-
cited ion pair to the neutral products, followed by hot ion-
ization to the ion pair in the ground state [Fig. 2]. If internal
conversion dominates, then all ion pairs are deactivated with
100% efficiency and consequently a’=1.

This alternative has been considered using a time con-
stant of internal conversion of 7;,=3 ps.7 However, this did
not bring any significant change. Although this mechanism
produces more ion pairs in the ground state, all of them are
born in or near the charge recombination layer and thus re-
combine much faster than they separate. Therefore their con-
tribution to the free ion yield is negligible. It can thus be
concluded that the free ion yield is only weakly sensitive to
a particular value of a".

IV. HOT RECOMBINATION

The results of the fit indicate a significant role of hot
transitions in the recombination dynamics. The effect of hot
recombination on the formation of ions depends strongly on
the quenching channel. Let us start with the electron transfer
to the excited ion pair [Fig. 1], which proceeds in the Marcus
normal region (at ¢;) and is followed by downward diffusion
to the bottom of the D**A~ well. Since the most effective
sinks at the q;(") points lie in the Marcus inverted region
(Fig. 1), the bottom is reached before the crossing points and
the subsequent recombination is mainly thermal, that is, it
goes “up and down” from this well to the neutral product
potentials.

On the contrary, the charge recombination following the
forward electron transfer to the ion pair in the ground state
D*A™ [see Fig. 1] is in the Marcus normal region and in-
cludes “down-down” hot transition (Fig. 1). Indeed, starting
from a crossing point q(l"), the system moves down to the
intersection points q(zn) and further down to the bottom of the
well. Therefore, the ions pair undergoes first a charge recom-
bination to the neutral product at the points q(Q") and thermal-
ize afterward. In other words, hot recombination at q;") pre-
cedes thermalization, taking away a (1—c«) fraction of the
ion-pair population and leaving only an « fraction that will
recombine thermally (“up-down”) afterwards.

On the other hand, the neutral product generated by
thermal charge recombination of the excited ion pair also
experiences a hot ionization at q(Z")(n =<0) before reaching the

J. Chem. Phys. 123, 244510 (2005)

bottom of the DA state. This is the secondary ionization pro-
ceeding with efficiency " to the ion-pair state D*A~ [Fig. 2].

The distributions of ionization products were calculated
from Egs. (26) with the parameters obtained from the best fit
of the ionization kinetics Eqgs. (27) and (28). As mentioned
above, excited ion pairs are produced near contact distance,
while those in the ground state are produced in a larger
amount and larger distance (see Fig. 4). If we neglect the
encounter diffusion of the ions during the motion from ¢, to
¢, and from q; to g,, the fractions of ions reaching equilib-
rium by the two parallel pathways can then be estimated as
a(r)m(r) and o (r)m"(r). The r distributions of these equili-
brated ion pairs are shown by the dash-dotted lines in Fig. 4.
These distributions are significantly altered and reduced
compared to m(r) and m”(r) because of hot recombination.
These changes arise from a(r) and «'(r) whose values and
space dispersions are calculated below.

The value of « for a system subjected to a single cross-
ing during relaxation has been determined in Refs. 23 and
38. However, the present situation is more complex. Indeed,
immediately after the transition to the D*A~ well near q(I”),
the system almost instantaneously reaches the lowest vibra-
tional level (n=0) because of the ultrafast intramolecular vi-
brational redistribution and crosses a number of vibrational
sublevels of DA while moving toward the bottom of the
D*A~ well (Fig. 1). If these vibrations participate in the
charge recombination, i.e., are being Franck-Condon active,
the survival probability of the ion pair reduces upon each
crossing. Similarly, hot transitions reduce by a factor 1—a"
the survival probability of neutral product, which moves
down from q;(") toward the bottom of the DA well and
crosses several vibrational sublevels of the D*A™ state.

Following Ref. 26, we consider a sequence of hot elec-
tronic transitions to the sublevels Ug'f)‘. The probability of a
transition generating n vibrational quanta W,, can be calcu-
lated using the method developed in Ref. 23 In the present
notation it is given by

1 1 -l
W,, = —2 2 4 27V2 (——),34
=4, [ H2VelO\ T T ] G4

where
au) (n)
2N 9Upip- q; =2\
1n = = —’
7L &q qzq(zll) 7L
(35)
2\ U g
m=_ . ="
T, (96] qzq(zn) T,

are the slopes of the potential intersecting at q(z"). Only those
points, which are to the right of q(lo) and whose number is
Nyaxe Need to be considered.

If AQ)> kT, the mutual influence of the nearest crossing

points is negligible. Under this condition, the survival
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FIG. 6. Fractions of ion pairs having escaped hot recombination to the
neutral products « (solid lines) and thermalized fraction of excited ion pairs
a" (dashed lines) as a function of interionic distance r calculated using the
double-channel model [Eq. (29)] and the multi-channel model [Eq. (30)].

probability of the ion-pair population is the product of the
partial survival probabilities considered as independent
events,

Mmax

an =11 (1-w,,). (36)
n=0

The r dependence of « originating from the r dependence of
both Vi(r) and \(r) is depicted in Fig. 6.

A similar reasoning can be used to estimate the ground-
state ion population generated via the excited-state channel.
The value of a” is

a(n=1-[1 1-w,, (37)
n=0
where
2aV2 (r 1 IR
1n=——4?£2{1+2wv§xn(—x—+—a—)} . (38)
| 2n |A2n| |Aln|
. ) _ o\ . *#(n)
Aln = 1 ’ AZn = d ’ (39)
7L 7L

where ¢"" =\ -~ AGg+nhQ), and n,,, is determined from the
condition ¢"=2\. The difference between a'(r) and a(r)
shown in Fig. 6 is most pronounced at large separation where
a"—0, because hot ionization is switched off, and a— 1,
because hot recombination is no longer efficient. Because of
the hot transfer processes, the population of thermalized ion
pairs is significantly reduced compared to those of their pri-
mary generated precursors.

The calculated a(r) and a"(r) dependencies, along with
the initial r distribution of ion pairs m(r) and m"(r) (Fig. 4),
allow the efficiency of hot transitions in both channels to be
estimated. Introducing the efficiencies of ion-pair production
through the ground and excited channels,

J. Chem. Phys. 123, 244510 (2005)

Py=c f m(r)d’r, (40a)

Py=c J m"(r)d°r, (40b)
the amounts of thermalized pairs Py, and Pfh participating in
the subsequent thermal recombination are then calculated as

Py=c f a(rm(rd’r, (41a)

p;:cfawﬂm%afn (41b)
These parameters, calculated for the double-channel model,
are

Py=0.89, P,=0.10, Py=0.08, P,=0.04, (42)

and those for the multichannel model are

Py=0.96, P,=0.03, Py=0.08, P,=002. (43)

Because of the hot transfer, the total amount of thermal-
ized pairs P[h+Pt*h is equal to only 10%—12% of that of the
initially generated pairs, P0+P$. Therefore, for the system
considered here, about 90% of the initially created radical
ion pairs undergo hot transitions, 4% of them dissociate into
free ions, and only 6% recombine through thermal channels.

V. CONCLUSIONS

This is, to our knowledge, the first relatively successful
fit of a backward electron transfer kinetics which takes into
account the hot recombination of photogenerated ion pairs.
The information obtained earlier from the best fit of the for-
ward electron transfer with the same system has been used.
This study indicates the presence of two parallel channels of
ionization, to the ground and excited states of ion pairs,
whose products are located rather far and close to the con-
tact, respectively. Since the backward transfer occurs essen-
tially near contact, the closely spaced excited ion pairs dis-
appear almost completely upon geminate recombination
while those in the ground state have a high probability to
escape it and thus provide the main contribution into the free
ion yield.

The hot recombination of ion pairs is a decisive factor. It
is shown that, in the present system, the vast majority of ion
pairs have recombined through the hot channel before they
are equilibrated and start to recombine with the usual thermal
rates. Almost 90% of the ion pairs recombine before equilib-
rium is reached and the subsequent thermal recombination is
accelerated by their encounter diffusion. As a result, no more
than 6% of their initial population are finally separated (at
¢=0.32 M). Such a surprisingly fast back electron transfer
proceeding through the hot channel was also detected in
Ru(IT)-Co(III) mixed-valence complexes in butyronitrile.39
In this case as well, less than 50% of the ion pairs generated
by the excitation of the metal-to-metal charge-transfer band
avoid this recombination and reach equilibrium. These ex-
amples show that the study of any system should start from
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the inspection of the energy scheme as presented in Fig. 1.
This has to be done to find out whether the quenching prod-
uct has to pass a crossing point (like ¢,) on its way to the
bottom of the well. If this is the case, one should care not
only for thermal but first of all for the hot transfer as a
dominant factor in the charge recombination.

Since hot transitions cannot be discussed in terms of rate
constant, their appropriate description has called for an ex-
tension of existing theories of electron transfer quenching in
solutions to explicitly account for reaction coordinate dy-
namics. In the theory presented here, both the chemical dy-
namics and the mutual spatial diffusion of the reactants have
been taken into account. It should be noted that the spatial
motion of the reactants was not considered in previous in-
vestigations of hot transitions.” "> In particular, in Ref. 21
the average lifetime of the immobile ion pairs subjected to
hot and thermal recombination was calculated. On the con-
trary, we have considered here the competition between the
recombination of thermalized ion pairs and their diffusional
separation.

A second new element of the present investigation is
connected to the fact that both the ionization and recombina-
tion of the Pe-TCNE pairs are considerably affected by the
introduction of a high-frequency quantum mode. With such a
mode, many term crossings with different values of the vi-
brational quantum number are available for hot transition.
Therefore, the hot recombination efficiency is greatly en-
hanced. As a result, only the pairs created with a relatively
large inter-ionic distance have a finite probability to avoid
hot recombination. This allows the unusually small free ion
yield of this donor-acceptor pair to be explained.
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APPENDIX: SIMULATION METHOD

In the numerical simulations, the Brownian simulation
method in the form proposed before in Refs. 38 and 40 was
used. Here we outline some features of the program imple-
mentation specific to the model considered. The software is
available on the web (http://physics.volsu.ru/feskov).

The first step in the simulations is the time propagation
of an ensemble of N (N=10°-107) Brownian quasiparticles
representing the initial distribution of the excited donor-
acceptor pairs in extended coordinate space according to the
diffusion equations [(8) and (14)] and the reflective boundary
conditions at contact radius (21). The important points of the
algorithm are as follows.

(1) The initial distribution of quasiparticles obeys Eq. (22).

(2) The unreactive Brownian trajectory of quasiparticle is a
Markovian random process in {r,q} space.

(3) The electronic transitions in donor-acceptor pairs are
modeled by hops of quasiparticles between the poten-
: . : (n) _*(n) ¢+ _
tial surfaces (1) at the crossing points ¢, ¢, (i=1,2).

J. Chem. Phys. 123, 244510 (2005)

(4) The internal conversion of the excited ion pairs is ac-
counted for as an irreversible decay D*A~— D*A~
with the characteristic time constant 7;,.

An unreactive trajectory of the kth quasiparticle is cal-
culated as a set of coordinates {r,((’),qk)} at consecutive time

intervals At;. Using well-known Green’s functions for the
diffusion operators D and L as the probability distributions
of random walks at r and g subspaces, one obtains the fol-
lowing simulation rules:

q;{i) _ q](ci—l) e AT Xi\r/Z)\( r]((i—l)) ks T(1 — e—ZAzi/TL),
r,(f)=r,(j_1)+ Y[V2D(r DAt + D(r M)A,

k

for trajectory on the neutral state surface, and

D= 2N + (g =20 )y e i

+ XNk T(1 = 72807

r,((’) = r,(f_]) + Y,-\"ZD(r}c'_l))At,-

r. -1)
+ <2— (iil)) = 1)D(r )AL,
Tk

for that on the ion state surface. Here X; and Y, are the
Gaussian random numbers with zero mean value and unit
dispersion. The above equations are exact for unreactive dif-
fusion along ¢ and are approximate for the spatial diffusion
along r, valid for small-time steps.

Each particle is assumed to occupy the volume Al in the
configuration space {r,g}. This quantity appears naturally
when one relates the initial normalized probability distribu-
tion function [Eq. (22)] and the finite number N of Brownian
quasiparticles. Since the diffusion along r results in an alter-
ation of A", an additional weight factor v,(;) is introduced and
calculated at each time step as follows:

Ai=D\2
k

O B
Tk

This guarantees the conservation of the distribution function
normalization in the absence of reactions

(A1)

> 4m(r)2ATY = AT Y 47(rD)*0f” = const. (A2)
k k

The surface-hopping algorithm%’41 is applied to simulate
electronic transitions between the diabatic surfaces at the
crossing points g;(r). The probability of survival at the same

surface is

W ( 2’7TV21(V D)Ati)
—ex SRk IS

A3
hAUY (43)

which is the well- known result of perturbatlon theory. Here
U(’) U( ,((’),qk)) U( ,qk V) and Vel(r ) is the corre-
spondlng electronic couphng element.
The reaction flux j(;) between two free-energy surfaces
can be easily calculated through the total configuration vol-
ume transferred from one surface to another during the time
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interval At;. Since each hop of a ?uasiparticle generates the
elementary flux Aj]((’):47r(r/((’))2AFk’)/ At;, the total flux is

j(t) =2 Aj = ATIAL D, 4m(r))*of, (A4)
k k

where the summation is taken over particles having trans-
ferred between the given surfaces.

The time-dependent survival probabilities of the excited
donors N(z) and radical-ion pairs P(z) are then directly deter-
mined by the reaction fluxes j,(r) and jg(¢) for ionization and
recombination, respectively. Since the ionization proceeds
through two parallel channels the flux j,(¢) is a sum

jz(t)+j;(f)=k1(t)=Jdsrqu wir,g)v(r,q,1).  (AS)

Similarly the recombination fluxes through the ground and
excited channels are

Jr(t) = f d’r J dg w(r,q)p(r,q,1), (A6a)

Jr(0) = f &r J dg wi(r,Q) " (r,q.1). (A6b)

Using these quantities, the survival probability of the excited
donor state is calculated as

N(t) = expy — cfj,(t’)dt’ -t/ (A7)
0
and the kinetics of the ground- and excited-state ion pairs,
P(t)=6£ Li(eNG') = jr(t')1dt’, (A8)
! "
P()=c fo iy (1 ING") = e et (A9)

The numerical integration in Egs. (A7) and (A8) is per-
formed by the standard finite-difference methods.
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The efficiencies of contact geminate recombination to either the ground or excited triplet state of neutral
products are calculated for contact and remote starts of radical ion pairs initially created in the singlet state.
Considering the spin-conversion in this pair as a stochastic process with given rate, the diffusional dependence
of recombination and charge separation yields and corresponding efficiencies are specified. This is compared
with the experimental data obtained for photo-excited perylene quenched by aromatic amines in dimethyl
sulfoxide—glycerol mixtures, which allow for a wide variation of solvent viscosity with composition. The
successful fitting of the theory to non-trivial viscosity dependences confirms that the spin-forbidden
recombination is composed of two sequential stages. Considering that the radical-ion pair is created in

the singlet state, the spin conversion should precede its recombination to the excited triplet product.

1 Introduction and Z/D is a single parameter of the problem. It was studied
as a function of the free energy of recombination, encounter

Radical Ion Pairs (RIPs) are created in either the singlet or tri- diffusion and spin conversion responsible for the magnetic field

plet state depending on the precursors which are excited singlet effects. 68

or triplet donor (‘D or D) and charge acceptor A in the bulk. Much less study has been done for RIPs having a singlet pre-

The ion pairs [D"---A7] can be either separated by diffusion cursor. Although this situation is more often studied than the
producing free ions or recombine to give either the ground or  case of RIPs with triplet precursors, it is rarely investigated as

excited triplet state of the neutral product. The ruthenium tris- a function of viscosity. There are only a few studies where the
bipyridine complex quenched by methylviologen (MV>") is so forward transfer was investigated in solvents of different visc-
far is the most thoroughly studied reaction of this sort:'~ osities®! and similarly only a few studies where backward
3. 24 * e W 33 o o S transfer was also investigated.'>'®> The system studied in this
(’ Ru ) +MVT — - [Ru ..MV ]—> Ru’* + “MV work is perylene (Per) quenched by aromatic amines (D):
ks‘ lT 3ks * s - + - — +
s, . . . Per*+D = [Per ...D"] — Per +D
'[Ru** ... MV*}| 2Ru*t + 2 MV* [ }
I W ¢
S
. Per...D IT
[Ru?t ... MV?*] I [Per...D] (I1)

This reaction can be represented by the following comprehen-

This reaction scheme can be generalized and formalized as sive scheme:

follows:
- +
D+ A7 % ’ EN
VAN W 3k
ks TA* —, A~...DY] == 3A"...D'].
D +A LD AT ]==1D'...A"] A+D A”...DT} == "A"...D]
3k Iz I Ws I Wr
Lt 4 ws A A...D] [A*...D] (1.3)

D [D...A] (1.1)

Now we have two parallel channels of geminate recombina-
tion: to the singlet (ground) and triplet (excited) states and
should discriminate between their efficiencies, Zg and Zt which
contribute to the total

There is a single channel of charge recombination: only to the
ground state with the rate Ws. This competes with the diffu-
sional separation of RIP from both the singlet and triplet states
whichhasayield @ = (1 + Z/D)™ ' expressed through the recom-
bination efficiency Z and encounter diffusion coefficient D = Z=2Zs+ Zr. (1.4)
D+ Dp- 7

The sum of the yields of the neutral and charged reaction
products is evidently 1,

Correspondingly, there are three terms in the quantum yield
balance instead of only two as in eqn. (1.2):

Z 2 (1.2) PP S S
D+z D+z ' Ty 2 " Dz Dz

ot 1. (1.5)
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The presence of the triplet channel of geminate recombination
was first recognized by Weller er al. and the existence of the
excited triplet products was experimentally proved.'*!> The
RIP recombination through a triplet channel assumed in ref.
16 allowed an explanation of the non-trivial charge accumula-
tion and geminate recombination kinetics studied in ref. 17.
Later on not only the value but also the viscosity dependence
of @, became experimentally available.'® Having at hand two
independent components of eqn. (1.5), ¢, and @, one can easily
obtain two corresponding recombination parameters,

Zr =D and Z:D(lfl), (1.6)
® ?

as well as the third , Zg = Z — Zt. The main goal of the pre-
sent article is to specify the diffusional dependence of all three
of these.

In spin-less theory there is a single recombination parameter
Z(D) which was investigated in refs. 5 and 6. There it was
shown that contact geminate reactions can be subdivided into
kinetic and diffusion controlled reactions provided the initial
separation of radical ions, r, essentially exceeds the contact dis-
tance ¢ where recombination takes place. At small D the gemi-
nate recombination is under diffusion control and its efficiency
increases linearly with D but then saturates and approaches the
kinetic limit gz = lim Z which is viscosity independent. In

. D—oo

highly polar solvents

g=oa/r, and z=k_yo’/3=k./4n0, (1.7)
where k_, is the recombination rate of the so-called Exponen-
tial Model (EM) easily related to the kinetic rate constant of
contact bimolecular recombination, k..’ In the EM, Z=z =
const. everywhere because the model assumes that ions not
only recombine but that this also starts from contact (that is
r = a). For electron transfer this is rarely the case because ions
can be created at larger distances especially when ionization is
under diffusion control >!%!°

There is also an extension of the EM for a two channel reac-
tion (I).>%?' The yields of triplets and separated ions are
represented as follows:

kisc ksep

p=—" 1.8
g ksep + k—el + kisc ( )

7 ksep + k—el + kisc ’
where ke, is the EM rate of ion separation. The only difference
from a single-channel EM is the substitution of k_., by the sum
of the spin-allowed and spin-forbidden transfer rates
k_et + kisc , to the ground and to the triplet state, respectively.
Like k_ the inter-system crossing rate k;s. does not depend on
viscosity. Moreover, EM does not recognize two different steps
of the forbidden transition: spin-conversion to the triplet RIP
and subsequent allowed electron transfer into the triplet pro-
duct.?*2* However, it has been shown already that one should
discriminate between spin conversion and subsequent recombi-
nation even in the case of a single channel but spin-forbidden
reaction (I).?® The simplest (stochastic) model of spin-conver-
sion implies that it proceeds with the rate k; from the triplet
to singlet and with rate 3k from the singlet to triplet. Within
this model implemented into unified theory not only the
magnetic field effect was estimated®® and compared with a real
one,* but also exciplex formation and dissociation was stu-
died?*?® as well as chemiluminescence.?’ In most instances,
the backward electron transfer was assumed to be contact:

W*k§ o(r —a) W*kCT O( ) (1.9)
5—47_[02(1 ag), T_41'|:(;2( r—ao). .

The incoherent spin-conversion and contact recombination
were also assumed when the two-channel reaction (II) was con-
sidered by means of Integral Encounter Theory (IET).30:31
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However, the goal of these studies was to determine the free
energy dependence of the forward and backward electron
transfer rather than the diffusional dependence of the quantum
yields and recombination efficiencies which are of the most
interest here. Using the conventional Green function formal-
ism the efficiencies of singlet and triplet RIP recombination
will be calculated and compared relative to each other. The
qualitative difference between spin-allowed and spin-forbidden
recombination will be established as well as the crucial depen-
dence of both on the rate of spin conversion.

The outline of this paper is as follows. In the next section
we will present the general expression for singlet and triplet
recombination efficiencies, Zs and Zt. In section 3 they will
be specified assuming contact creation of the radical-ion pair
in addition to their contact recombination. In section 4 the
results will be reconsidered allowing the distant production
of RIP in the course of diffusion controlled ionization. In sec-
tion 5 we present the fitting of real data with our model. The
results will be summarized in Conclusions.

2 Recombination efficiencies of singlet and triplet
channels

Rearranging eqn. (1.6) we can obtain the uniform definitions
for the singlet and triplet efficiencies:

bl

ZT:i)% and Zs=D%, 2.1)

%

where the relationships (1.4) and (1.5) hold as before and all
quantum yields are averaged over the normalized initial distri-
bution of RIPs produced by bimolecular ionization:>~’

o= / ofo(NPr, Gy = / ou(fo(r,
@y = /(p‘(r) o(r)d3r. (2.2)

The general solution of the problem can be deduced from
results obtained in refs. 5 and 25. There we considered the
exciplex formation from RIPs experiencing recombination to
triplet and ground states. In that case, the singlet channel of
recombination was composed of two parallel sub-channels:
to the singlet exciplex (with the rate constant K) and the
ground state (with another constant k5). If the former is
switched off we reduce the problem to the present one. Thus
setting K = 0 in the total rate constant of the singlet RIP
recombination K* = K4k — k3 we obtain instead of eqns.
(9.56) and (9.57) of ref. 5 the following quantum yield for
RIP recombination to the ground state:

(Ps(r) = chi)SS(O_a r, O)
kS o
:kcs_‘rick]){;fps'[(o',r,o)(k;rﬁ’k]))}, (23)

where kp = 4neD is the diffusional rate constant for the con-
tact transfer and

J(0,r,0)[1 + &3 /kp| — #(0,0,0)[kS /4nrD]

p ,1,0) =3
Pst(o,r,0) 1+ kS /kp + 3[kT — k8] #(a,0,0)
(2.4)
Here the spin sensitive quantity is defined as:
1 _ a—u(r—o)/c
7(0,7,0) = ke (r,0) = — + 2~ (2.5)

16mrD(1 + o 4 kT /kp)’

where o = \/4ks02/D is a measure of the spin-conversion dur-
ing the encounter time tq = ¢2/D. Substituting eqn. (2.5) into
(2.4) we obtain the final and most general expression for the



Green function of the singlet to triplet transition in RIP:
N 30 akp + [l — 67“(“”)/"] (kD + kg)
pST(G’r’O):I T $) 43 T _/S)"
rlkp(1 4 o) + k) (kp + k8) 4 Jokp (kKT — KS)
(2.6)
As follows from eqn. (9.60) of ref. 5, the quantum yield

of the triplet recombination products of RIPs started from
distance r is

@u(r) = kepst(a, 1, 0). 2.7)
Correspondingly, the charge separation quantum yield is:

k3 /4mrD + (kI = kd)pst(a,1,0)

o(r) =1 1+ kS /kp

(2.8)

When kg = « = 0, there is no triplet production: ¢, =0. As a
result the two other yields coincide with their conventional EM
analogs:

o kS
¢ =0, </’s(r)—7kcs+—kD— 1—o(r). (29)

In the alternative limit ks = o = oo the complete equilibra-
tion of the spin states in RIP is immediately achieved, as fol-
lows from eqns. (2.6) and (2.7), (2.3):

30 ch

T Ay + LAS 1+ 3KT

[ kg 3 kT+kD
SR T R N OB (1
s rk§+kD{ 4k +1KS + 34T (210)

These values of quantum yields are quite different if one of the
recombination channels is switched off:

=0 _o gk oy (2.11a)
§0t I (ps rkD+%ks c N
(4
3T
o ch S
— 2 _47c¢ = k> =0. 2.11
o rkD-i—%ch’ 0, =0 atkl=0 ( b)

The results are self-evident.

3 Contact start

This is the simplest case related mainly to atom transfer
which is contact in both directions. When not only backward
transfer is contact but also the forward transfer then RIPs
are created only at r = ¢. Thus, all the above formulae
are greatly simplified. In particular eqn. (2.6) becomes the
following:

30
p 0) = .
Po1(020:0) = i (1 o) + KIJ(1 + K3 ko) + 3olkT — &)
(3.1)
Using this result in eqns. (2.3), (2.7) and (2.8) we obtain all

quantum yields and from them the recombination efficiencies
2.1):

Zr  3u/4

Zs 1 30/4

T
D 1+y"(1+a) D ) )y},(az)

1+)yT(1+«
where 35 = kp/kS and yT = kp/kL.

If ks = 0 then we return back to a particular case (2.9) with
zero triplet production and Z/D = Zg/D = kS /kp. If the
recombination to triplet product is not possible due to some
other reason (e.g. unfavorable free energy balance making
kI = 0) then, again, we have no triplet production but the
recombination to the ground state is affected by spin-

conversion:

Zs kKS1+a/4 Z
Zr =0, ==Cc =2 atkl =o0. 3.3
=% B Tk 1+a D e (33)

This case is identical to the previous one only at zero spin con-
version (ky = 0). Otherwise, the transition from the singlet to
triplet RIP makes the latter unable to recombine, thus favoring
the charge separation. Therefore Z decreases with ks to 1/4 of
the initial value and correspondingly increases the quantum
yield of separated radical ions. The similar difference between
slow and fast spin mixing was obtained in ref. 32 using a coher-
ent Ag mechanism of spin conversion.

Conversely, when the decay of the RIPs to the ground state
is switched off, then the spin-conversion facilitates their recom-
bination by opening the triplet channel:

Zr 3l z s
LTy afe L g0 atkS=0. (34
D ko(l+a)+kf b S e (34)

At ky = oo we have from the general formulae (3.3) and (3.4)
correspondingly:

Zmin 1
(a) D = Zk(?/va

max
or (b) Zb :;‘kCT/kD. (3.5)

Here both the recombination rates appear with their equili-
brium weights and in full accordance with eqn. (2.11). In Fig. 1
the recombination efficiencies for single channel recombina-
tion, be it a singlet (Zs) or triplet one (Z), are shown as func-
tions of kg at a fixed diffusion constant kp .

The situation is qualitatively different when the spin conver-

sion efficiency o = {/4k,02/D changes due to the diffusion
(viscosity) variation instead of k; variation. This is not a hypothetical
situation like the previous one, but rather a feasible possibility
that has been realized experimentally a number of times.>*!*13
The principal difference lies in the fact that the diffusion
changes not only o but k, = 4naD as well. This does not affect

s = k3 /4na, (3.6)

Ny

which is a universal function of «, but makes the shape of
ZT(I/\/B) different from that of Zr(vks) (Fig. 2). As a
function of D, Zr passes through a maximum being zero at

09
08 Z
0.7-:
0.0'5—~
0.5—-
0.4 z
03]

21z,

0.2

0.1

0.0 T T T T T T T T 1

Fig. 1 The variation of the efficiencies of single channel recombina-
tion (normalized to their maxima) with spin-conversion rate given by

o =1/4k?/D at o =7 A and fixed D =20 A% ns~'. The contact

recombination constant k. = 800 A ns~! is taken to be the same for
both reaction channels.
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Fig. 2 Diffusional (viscosity) dependence of recombination efficien-
cies of single channel reactions which proceed through singlet (Zs)
or triplet (Z1) transfer channels at fixed ks = 0.01 ns~'. Other para-
meters are as for Fig. 1.

D —0 as well as at D — oco:

z 3, Whkivkn
T AT 1 JRTkp + kp

where x = o’kp/k! = 16m6°k,/kY. This is exactly the same
formula as (8.38) in ref. 5 that was obtained for the recombina-
tion to the ground state of triplet born RIP,>?° except that kT
is substituted for k% and the triplet statistical weight (3/4) is
substituted for the singlet one (1/4). An exhaustive explana-
tion of the non-trivial extremal behavior of Z with diffusion
was given in Section VII F of the same review.® It originates
from the extremal behavior of the survival time z, of RIPs
which limits the spin conversion but is not identical to the
encounter time. For the contact born RIPs it turns to zero
not only in the fast but also in the slow diffusion limit.>** That
is why Zt — 2aD — 0 as D— 0 while the quantum yield of
triplets,

-
Zz

kI J4na, (3.7)

t

ZT 3o
= - — — —
Zr+ D 30+ 4

Py (3.8)

tends towards 1 as o — oo (Fig. 3).

0.9
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06 o,
0.5

0.4

Quantum yields
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0.24

T
0.0 0.2 0.4 0.6 0.8 1.0

ky/ k.

Fig. 3 Quantum yields of single-channel recombination through
singlet (¢s) or triplet (¢,) RIPs. Other parameters are as for Fig. 1.
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Much more complex is the two-channel reaction that is the
situation when both recombination rates are non-zero. It is
instructive to consider it when recombination through both
reaction channels proceeds with the same transfer rate:
kS = kI = k.. In this case, which is halfway between the two
previous cases, the spin conversion does not affect the total
recombination rate but only the relationship between the
singlet and triplet channels. Their recombination efficiencies
obtained from eqn. (3.2) are different:

Zr_ 34 1 Zs (3.9)
D 1+y(l+a) y D
where y = kp/k.. This asymmetry is caused by the initial con-
ditions promoting singlet RIPs. It has far reaching conseq-
uences for the viscosity dependence of both Zg(D) and Z(D),
but not

Z = Z5(0) = ke /4no = z. (3.10)

Since not only Zg(0) = z but Zg(oo) = z as well, the curve
Zs(D) has a minimum which appears exactly at the same argu-
ment D, = z, where the maximum of Z(D) is located (Fig. 4).
The height of the latter is higher the larger is k;:

Zmax,3 Vkso?/z <3Z
T 2" 42 ket 4T
This quantity becomes equal to the minimal value of Zg when

the rate of spin-conversion equals the rate of recombination,
ks = z/o°, that is

(3.11)

Zr=Zs=2Z/2, when ks=k/4no® =k /3. (3.12)

It is also instructive to compare the diffusional dependence
of the corresponding quantum yields shown in Fig. 5. This
monotonously increases with diffusion, ¢ = D/(D + Z), and
has exactly the same shape as in the exponential model because
according to eqn. (3.10) Z = z = const. The yield of recombi-
nation to the singlet products, @5 = ZS/([) + Z), has quite the
opposite dependence, because Zg is approximately constant as
far as it does not deviate essentially from Z. However, the yield
of triplet products is non-monotonous. At high diffusion ¢,
decreases as ¢, and for the same reason: the fast separation
of radicals prevent them from recombining. However, at slow
diffusion Zt — (32/4)D and

Zr 30D
= — —> — = —>
Zr+Zs+D 30D+4Z +4D

o, 0. (313
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Fig. 4 Diffusional dependence of singlet and triplet recombination
efficiencies at equal rates of parallel recombination channels (kS =
kT = k. =800 A’ ns™', k, = 0.01 ns™").
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Fig. 5 Quantum yields corresponding to efficiencies shown in pre-
vious figures as functions of diffusion given in units A% ns™'.

resembles the ¢ behavior. The extremal diffusional dependence
of this yield was discovered by Schultens who solved the same
problem (of *“spin-independent recombination”, k3 = k[)
assuming that coherent spin-conversion is separable from the
inter-particle dynamics.>* Their Fig. 5 is qualitatively similar
to our Fig. 5 although the latter relates to incoherent spin
conversion.

4 Non-contact start

When the ionization is due to remote electron transfer the radi-
cal ions in a pair can be created far from each other provided
the reaction is under diffusion control. This is accounted for by
setting the initial separation » > ¢ in our general formulae
(2.3), (2.4) and (2.5). However, the recombination carried
out by the backward electron transfer is also remote especially
as it is usually highly exergonic.

Nonetheless, the contact recombination must not be com-
pletely ruled out. Sometimes the backward charge transfer
can be conducted by proton transfer resulting in production
of two neutral radicals. Such recombinations were the subject
of a few time-resolved investigations® >’ and a theoretical
study of neutral radical accumulation after photoionization.*®
Here we will concentrate only on the quantum yield of them
which is ¢g(r) because the radicals are the products of the
contact recombination of the singlet RIP initially separated
by distance r.

In such a case the geminate recombination is subdivided into
either kinetic or diffusional. In the spin-less theory the latter
appears from the general eqn. (2.9) at D — 0:>¢
g

o
li N==, Z=Zs=
Dlg})qob(r) oy s=—

D. 4.1)
Even if spin-conversion is present in the diffusional limit it is so
strong that one can address the alternative eqns. (2.11) and
(2.12). It follows from these equations that the result for Z is
the same regardless of what recombination channel is working:
lim ,(r) = lim ¢,(r) =~ = 1 — lim ¢ (7).
D—0 D—0 r D—0
Due to complete equilibration of reactive and inactive states
the result remains the same at any recombination rates as long
as recombination is limited by diffusion and not by reaction.
Nothing is changed even if both channels are working with
equal rates (k3 = k! = k.):
o ke qz

g z=— ¥ 42
rkp + ke 1+ (1—¢q)z/D (42)

ptos=1-0

10

r=c=7A

0 . . . . .

112
D

Fig. 6 The singlet efficiency of double-channel recombination for dif-
ferent initial separations of the RIP r (¢ = 7 A). Other parameters are
as for Fig. 1

where ¢ = ¢/r and z = k./kp. This is the straightforward
extension of the spin-less result of eqn. (5.19) in ref. 5 to a
double-channel reaction. The linear increase of Zg with D is
a general feature of any reaction when diffusion is the slowest
process: D < (r/o — 1)z.

However, the presence of spin conversion makes the situa-
tion more complex. Diffusion not only facilitates the delivery
of singlet pairs to the contact but also controls their conversion
into triplets. At close starts these two opposite tendencies lead
to the non-monotonic behavior of Zg(D). Initially, the effect of
a remote start dominates and Zg increases with diffusion but
then it turns down copying the behavior inherent to the con-
tact start: it passes through the minimum and approaches
the kinetic plateau Zg = Z (Fig. 6). With increasing starting
distance the difference between the maximum and minimum
decreases until it disappears completely.

Since the non-monotonous diffusional dependence Z(D)
takes place at too short initial separations, smaller than the real
tunnelling length L ~ 1 A, it is only of heuristic interest. Contact
approximation is hardly applicable to such a case and should be
replaced by the theory of remote recombination. At faster diffu-
sion and/or larger initial separations, Zg increases monoto-
nously with D, as well as in the spin-less theory.>°

Not less dramatic changes happen to ¢, when the starting
separation of RIP is too small (Fig. 7). In the case of dou-
ble-channel recombination with equal rates we obtain from
eqns. (2.6) and (2.7):

30 ke okp

_ 1— —o(r—a)/o . 4.3
drke+ (I+a)kp ko +he € (43)

@(r)

This equation describes the rapid initial decrease of ¢(r) with
diffusion from its maximal value 30/4r. It is represented by
descending branches of the curves depicted in Fig.7. The low-
est of them passing through the minimum approach the lower
bell shaped curve related to the contact start. The curves
related to larger initial separations do the same but at faster
diffusion.

When

D> Dy = 4ki(r - o), (4.4)

then in the first order approximation in « it follows from eqns.
(2.3), (2.7) and (2.8) that

kS {a 3a[1+kcs/kD—k§/4nrD]} @5)

) i a1+ ko)
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Fig. 7 The yield of triplet products for the same non-contact starts as
in the previous figure: r = 7, 7.01, 7.1, 7.5 A (from bottom to top).

¢ 3ol + &S /kp — kS /4mrD]
©4(1+ o+ kS/kp) (kp + kT)’

o (r) = (4.6)

and
1
1 + kS /kp

« kE +3a(kg—k§)[l +k§/kD—k§/4nrD}
4mrD

4(kp + k) (1 + k3 /kp)
For the example of double-channel recombination with k5 =
kI = k. we have:

o(r) =1

(4.7)

3o z

e (r) = jmq’(ﬂv o(r)

:D+(lfq)z

= . (4.8
z+D (48)

where z = k./4no and ¢ = ¢ /r as above. According to defini-
tions (1.6)

3o zD qz
= 7=
4z:+D(1+a) 1+ (1—-¢q)z/D

The latter expression is exactly the same as in eqn. (4.2) while
the former does not depend on ¢ = o/r at all and coincides
with that derived for the contact start in eqn. (3.2).

Moreover, the efficiency of triplet production for remote
starts weakly depends on the initial conditions everywhere
but especially when condition (4.4) is met (Fig. 8). When VD
is much larger then \/ZTO the triplet efficiency for any starting
distance approaches the contact one. Unlike Zg which is satu-
rated in this region, Z passes through the maximum and turns
to zero as D — oo.

Although Z = Zs+ Z, it is not affected as much as both
constituents when fast spin-conversion gives way to slow
spin-conversion with an increase of D. The total Z simply
grows monotonously within the diffusion controlled region
and approaches the kinetic plateau gz as D — oo (Fig. 9).
The latter is lower the larger the initial separation of RIPs.

(4.9)

5 Fitting experimental data

Experimentally the quenching of perylene (Per) by dimethyla-
niline was studied in dimethyl sulfoxide-glycerol mixtures
which allow for a wide variation of solvent viscosity with com-
position, without changing any other physical properties.'”
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Fig. 8 The triplet efficiency of double-channel recombination with
equal rates at non-contact starts.

The quantum yields, ¢ and @,, were obtained through mea-
sured transient absorption of the Per radical anion and Per
triplet state in solutions of different viscosity, n (Table 1).
The efficiencies of recombination to the ground and triplet
states of the products were calculated from eqn. (2.1) and were
plotted as functions of the encounter diffusion coefficient of the
radical ions (Fig. 10).

Assuming that ions have the same diffusion coefficients as
the corresponding neutral particles, D, = Dp and D_ = Dx
were estimated through the Stokes-Einstein relationship
corrected by Spernol and Wirtz:*

kgT
X by G-1)

Here X is either D or A, the solvent radius r, = 2.5 A and the
correcting factor

fx= {0.16 + o.4’r—"] (094 04Tx — 0.25T,)
S

is expressed through the reduced temperature 7 = T T
. - b — 1t
where Ty and Ty, are the freezing and boiling temperatures,
and 7y is also the reduced temperature but for solvent. The cal-
culated values of the encounter diffusion coefficient,

D = D, +D_, are listed in Table 1.
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Fig. 9 The total efficiency of double-channel recombination with
equal rates at contact (horizontal line) and remote starts.



Table 1 Experimental quantum yields and D calculated from 5

1/cP 10’D/cm? s~ ¢ o
2.25 136 0.279 0.271
5.28 58.3 0.109 0.144
9.64 31.9 0.061 0.103

16.32 18.9 0.036 0.103
31.46 9.81 0.020 0.099
48.00 6.42 0.014 0.116
57.41 5.37 0.011 0.101
66.64 4.63 0.011 0.108
74.75 4.13 0.011 0.090
82.42 3.74 0.010 0.105
92.99 3.32 0.009 0.097

101.05 3.05 0.008 0.077

117.54 2.63 0.008 0.105

137.22 2.25 0.006 0.095

The theoretical curves shown in Fig. 10 were obtained in
contact approximation, using initial RIP separation r as a fit-
ting parameter in line with k5, k! and k. At such a rough fit-
ting the agreement obtained is rather good except for the final
points at the highest diffusion. This is not a surprise because
the efficiency of recombination to the ground state in this sys-
tem was studied earlier and recognized to be anomalous.®! It
passes through a maximum and decreases when diffusion accel-
erates. This effect was attributed to non-contact recombina-
tion. At fast diffusion ionization is under kinetic control so
that ions are born near the contact, inside the reaction layer
for recombination to the ground state. The latter is rather
extended or even shifted out of contact when reaction occurs
in the Marcus inverted region due to high exergonicity of
recombination. As a result, the recombination efficiency is hin-
dered by diffusion that helps ions to cross the reaction layer
sooner. This effect was completely lost here because the recom-
bination was assumed contact throughout.

This is even more true for the quantum yields shown in
Fig. 11. Here again only the final points are essentially devia-
ting from the theoretical curves. Only taking into account the
non-contact character of recombination to the ground state
can bend the upper curve and direct it to the lowest point.
As soon as the last Zg turns smaller, both ¢ = D/
[D+Zr+Zs] and ¢, = Zr/[D+ Z" + Zs] have to increase
correspondingly making the total agreement better.
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Fig. 10 Experimental efficiencies of recombination to ground (trian-
gles) and triplet (circles) products as well as the total (squares), fitted
with our theory of contact recombination from a remote start
r=1751 A, at k=15 ns~! and following recombination rates:
kS =45 % 10* A’ns™, kT = 5x 10° A’ ns™!, (0 = 7.5 A).
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Fig. 11 The quantum yields of singlet (triangles) and triplet (circles)
recombination products as well as the charge separation yield
(squares). All the points and fitting curves are recalculated from Z data
depicted in Fig. 10.

The last but not the least argument for such a revision is the
value of initial separation found from the best fit being only 0.1
A larger than the contact one. Even for proton transfer the
contact approximation is hardly suitable for such a small
separation and definitely inappropriate for electron transfer.
The contact solutions are very unstable regarding the variation
of small » as was demonstrated in Figs. 6 and 7. Insignificant
changes in r strongly affect the results, making the fitting much
less successful. From a physical point of view this is an arte-
fact. Changing the starting position deeply inside the recombi-
nation layer of the width L~ 1-2 A, should not be as crucial.
This is just an indication that contact approximation must be
substituted for one which accounts for the remote recombina-
tion. This makes actual the solution of the present problem
with the non-contact model of Wg(r) that can better reproduce
the extremal behavior of the two upper curves in Fig. 10.

6 Conclusions

The contact theory of geminate recombination to the ground
and triplet states is developed. It substitutes the inappropriate
“exponential model” of such a reaction and differs from it by
splitting the spin-forbidden transition into sequential spin-con-
version and recombination stages. However, the spin-conver-
sion is taken into account in the simplest way by assuming a
stochastic transition between the different spin states of RIPs.
The averaging of quantum yields (2.2) over the true initial dis-
tributions fo(r) was also avoided. The unique starting distance
r was assumed constant although the average distance shifts
closer to contact with increasing diffusion.® Moreover, even
the contact approximation itself is too rough to deal with the
closest starts brought in to the narrow recombination layer.
In view of all these simplifications, agreement between the the-
ory and experiment is surprisingly good, indicating that the
main features of the phenomenon are taken into account.
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Production of Free Radicals and Triplets from Contact Radical Pairs and from
Photochemically Generated Radical lons

V. S. Gladkikh, G. Angulo, and A. |. Burshtein*

Weizmann Institute of Science, Retio76100, Israel

Receied: December 6, 2006; In Final Form: January 24, 2007

The quantum yields of triplets and free radicals (or radical ions) that escaped recombination in photochemically
created primary radical pairs (or radical ion pairs) are calculated. As the products of monomolecular
photodissociation, the neutral radicals appear at contact, while the ions are initially distributed over the space
due to distant photoionization (bimolecular electron transfer) in the liquid solution. The diffusional dependence
of the quantum yields is shown to be different when recombination starts from contact or from separated
reactants. The experimental data for recombination of ionized perylene with aromatic amine counterions is
well fitted with the noncontact initial distribution provided the recombination is also noncontact and even
more distant than ionization.

I. Introduction Settingfo(r) = o(r — rg), one can calculate the yield of the
charge separation from any given starting pajrito). It is very
specific for anyrg and quite different frong. The same is true

for the partial yields of the singlet and triplet recombination
and related to their efficiencies. For the averaged yields, these

relationships are given by the following formulas:

The formation of free ions and triplets due to recombination/
separation of photochemically created radical ion pairs (RIPS)
was the subject of the numerous investigations starting from
the classical works of Weller and his co-workér$.The yields
of recombination products are very specific functions of
encounter diffusion, which were first given analytic interpreta- -
tion in ref 8. This theory was reasonably well fitted to the 7 __D . ?

: - P = S
experimental data assuming that the recombination is contact
and the counterions are initially separated by a definite distance,
ro. The system studied is excited pery|ene (A*) quenched by whereZs and Zr are the efficiencies of recombination to the
electron transfer to some aromatic amines (D). The subsequensinglet and triplet products, whereas
incoherent spin conversion proceeding with the tatanakes .
possible the RIP recombination to both the singlet and triplet L=Zst 7y

neutral products accompanied by RIP separation, according to. s . e -
the following comprehensive scheme: is the total one, an® is the counterion diffusion coefficient.

As is known10

ZS-¢=ZT
T z+D

(1.3)

AT+ D P asTar=1 (1.4)
d ;i A This relationship holds also for any particular starting distance
AT+ D AT D] — AT D). .1y ro, including the contact one.
|7 W ’ Wy The difference between the charge separation from contact,
¢@(0), and from the remote starip, should be especially
A [A...D] [34*...D] emphasized. The latter is averaged over the true distribution

fo(r), prepared by preceding photoionization. There is a similar
difference between the vyields of singlet and triplet neutral

Here the rate of ionizationW(r), as well as the rates of !
products,ps(o) and ¢(o), and their averaged value®s and

recombination through the singlet and triplets channéigr)

and Wi(r), are space dependent.is the excitation life time
and the charge separation yiejdy), is averaged over the initial
distribution of chargesfy(r):

@ = [of(r) dr (1.2)

@t The same is true for the corresponding recombination
efficiencies.

In principle, the contact yieldsps(0), ¢i(o), and ¢(0), are
worthy of study in their own right. They are the true yields of
the photodissociation products provided the excited molecule
separates into two contact born radicals: tAhw — A* —

10.1021/jp068375f CCC: $37.00 © 2007 American Chemical Society
Published on Web 04/18/2007
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[B-+-C]. However, the same description of the photoionization the exponential approximation for both the ionization and
(eq 1.1) serves only as a useful model for understanding therecombination rates, eqs 1.6 and 1.7. This helps us to reach the

problem. For the real fitting, all the yields should be averaged
over the preliminary calculated initial distribution of the partners
in the geminate pairs.

To calculatep(o) and¢i(o) or @ and@:, we have to use the
results obtained in ref 8 for the contact recombination in polar
solvents (with Onsager radius = €/(eT) < 0):

oy + [1 — &%k + K

@r) = '{3—0
Do+ @) + Kl + ) + Saks(kl — K
(1.5a)
. KJ(4arD) + (1 — KK e(r)
pr)=1 i @/ko (1.5b)
Here a = «/4k502/|5 is a measure of the singletriplet

conversion during encounter tins@/D, andkp = 4moD is the
diffusional rate constant. The double-channel contact recombi-
nation, proceeding at only the closest approach distande
represented by two rate constants,

kf = f W(r) d and k! = W(r) Pr

best fit to the experimental data of the total efficiency of
recombination, as well as of partial ones, to singlet and triplet
recombination products.

[l. Contact Start and Contact Recombination

Settingr = o, we obtain from eq 1.5:

3 keko
¢0) = Za . 3 .

[ko(L + o) + ke](ko + K) + Fako(k; = k)

(2.1a8)
1 1ok
@(0) = L+ ik 1+ kf/kat(O) (2.1b)
If there is no spin conversiom(o) = oo = 0 but

cp(a)—1+1sl = 1+1Z/D’ so that ZZHUZZS

o (2.2)

These are the conventional results of the spin-less théanyd
They depend on the free energies of electron transfer to thethe same gains from eq 2.1 in the exceptional d{sec kf
singlet and triplet products and the electron coupling between though the triplet yield is not zero in such a case:

the corresponding states.

Assuming recombination to be contact, egs 1.5a,b were used
to obtain the yields and recombination efficiencies at the contact
(section Il) start. For a remote start, the initial distributions of
ions, fo(r,D), have to be calculated for ary. This is done by
means of differential encounter theory (DET)n section llI
using the exponential model for the ionization rate:

W(r) = W, exp[-2(r — 0)/I] (1.6)
In section IV, the distributions obtained for such a rate were
used for averaging the yields according to recipe 1.2. At small
D, the diffusional acceleration of the recombination due to a
remote start was confirmed for fixad > o, as well as for the
distributed initial separation. In any case, the theory of contact
recombination fits the experimental data only qualitatively,
leaving unexplained the diffusional deceleration of recombina-
tion at the highesb.

The quantitative agreement is reached only in section V,
where the exponential rate model is substituted for the contact
one, also for recombination:

Wy(r) = W, exp[—2(r — o0)/lg] and
Wi (r) = W, exp[-2(r — o)/lg] (1.7)

Then the diffusional deceleration of the recombination is
naturally explained. This unexpected effect obtained by Dr.
Angulo was first given a proper interpretation in ref 11 using
the rectangular model of the recombination rate or its Marcus
analog in the deeply inverted region. This effect was attributed

to the escape from the extended recombination layer when the

start is taken from inside #13 The spin conversion and
recombination through the triplet channel were ignored in these
works dealing with single channel recombination. Conversely,
the treatment of spin effects in ref 8 was done using the contact
model of recombination, which excludes the possibility of an
inner start. Here we obtain the same effect once again employing

(0)=3 o
P P o+ o) + k(o k)

at k!
2.3)

From the general expression féf and Zs derived in ref 8
(eq 3.2), we can specifg = Zr + Zs as well:

Zr_3a Kk

D 4K +k(l+0a) (2.42)
z_ K. 3 k(1 — ki)
f)_kol+4kl+kD(1+a) (2.40)

It is remarkable thaZt does not depend on the rate of the singlet
recombination; it remains invariant at differeki, unlike Z.
The total efficiency changes witkf’ at any D except the
borders (aD = 0 andD = ) where alwayZt = 0 andZ =

Zs = z (Figure 1). In accordance with eq 2.4b, there is also
constantZ = z at anyD if kf = kI (horizontal line) and the
curvature sign oZ(D) is the opposite fok> < kI andk® > k!
(upper and lower curves).

For understanding better the physics that is behind the triplet
efficiency (eq 2.4a), let us represent it like some “in-cage
recombination constant” for the backward electron tran&fgf,
keeping in mind thaty = 1/(1 + 2/D) = 1/(1 + kpefkp) While

kbET:kget—i_ etand

.

k
kget=4naZT=§a#=

4K+ k(1 + @)

g’OLkD at ky/kl < 1l

4 2.5)

3_G T ot kK 1 .

A1+ o A kofke > e



3460 J. Phys. Chem. A, Vol. 111, No. 18, 2007 Gladkikh et al.

0 s _ T 4 , ;
2 good Ko =15k, .\ ;
c e . 1\ i
R ] 4 )i
5 N /|
= A ’
c S_ T 81 Y o
& 600+ k; =k, D b S S
g : AR
£ A
2 : N / i
E - 24 A
5 P I
B T e A
g kX =05k] 1 IV AN
5 200 7 b o
C 1 AN
© /,’l N
w | = NS
0 r T - T r | 0 AR | T """; M AR | 'I' MR | T T T T
0 50 100 150 0.02 oIk 200 g /K
D" A/ ns'? Figure 3. The diffusional dependence of the triplet “in-cage recom-

. — - bination constant” at ten times slower spin conversion than that in Figure
Figure 1. The total recombination efficiency, (upper curves), and 2 (c = 1670°%/K" = 0.2), shown by a solid curve, and the lowest

th‘e triplet oneZy (S'[he |0W$St CUW9)1T shown féf = ki (—), ks = 0.5 order approximations to this dependence in diffusional (D) and spin-
ks (— = ), andk; = 1.5; (-+) atk; =5 x 10* A¥ns. conversion controlled (S) regions (dashed lines). The solid vertical line
marks the boundaries between these regions.
T oa>>1 a<<1
L A /N gives way to kinetic control with
| T 37 1 K
3 D Sk S Kpe = 2k Kinetic limit: ;<<E<<K but a>1 (2.7)
8 5 This constant value is an upper limit fig,, which is hardly
~ (3/4) o K,y (3K’ . (3/4) a K attainable_. W_h_en diffusion increases, the spin cqnvgrsion
/ L . ¢ becomes inefficiento{ < 1) and starts to control recombination:
v _3 .1 375 |4k .
Kpet = S0tk = ZK; ~— spin conversion control:
4 4 D
Ko
e o<1l at —>« (2.8)

0 b — e
0.02 k1 x 20 200 T d
Kok, ke
F_igur_e 2. The diqusionaI de_pendence of the triplet “in-cage recom- Generally speaking the side regions of the diffusional and
bination constant” at fast spin conversion= 2), shown by a solid spin-conversion control extend toward each other, wheas

curve, and the lowest order approximations to this dependence in I d At | : ion€ 1) th
diffusional (D), kinetic (K), and spin-conversion controlled (S) regions Well @s«) reduces. At very slow spin conversion £ 1), the
(dashed lines). The solid vertical lines mark the boundaries between intermediate kinetic region is expelled entirely as shown in

these regions, while the dotted line indicates the position of the Figure 3. Simultaneously the maxin‘k%latlocated akD/kI =1
maximum. decreases:

3T
where «© = 167m3k;/k1 is a measure of the relative spin- maxkl = 3 N v at k> 1
conversion strength. et™ 4 —\3 3 T
. e . + =/

In Figure 2, the diffusional dependencelg, is shown for 2+ Vi V7o ke at k<1
the fast spin conversionc (> 1). In this limit, there are three ]
distinguishable regions: diffusional (D), kinetic (K) and spin- Whenks — 0, the maximum turns to 0 and the whole curve
conversion controlled (S) In each of them, the approximate d|SappearS. Such a transformation qUaIltat|Ve|y coincides with
expressions fok!,, deduced from eq 2.5, are exposed. Al- thatstudied previously in ref 14 and reviewed in ref 10 (Figure

e Iy . . . . . .
though the start is taken from contact, the radicals are im- 66). The only distinction is that previously the RIP was created
mediately separated and do not recombine until the next in the triplet state and recombined due to the spin conversion

recontact and the sequence of subsequent ones. The sooner th&§2 the permitted singlet channel, while now the process is going

follow each other, the faster geminate recombination is acceler-Pack to front. o )
ated by the diffusion: Another difference is in that here we consider the double

channel recombination, looking for both the singlet and triplet
: 3 y = e k1 channel efficiencies. It is true that the latter does not depend
Koet = Zako = 6mo x/@ diffusional limit: — < P 1 on how strong the former is but not vice versa. If one changes
(2.6) kI then not only Zr but also Zs as well asZ change
simultaneously. This is demonstrated in Figure 4, wieand

When the diffusion becomes too fast, the diffusional control Zr are plotted as functions of/D but contrary to Figure 1,

(2.9)
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Figure 4. The total (above) and triplet (below) recombination
efficiencies at fixedk! = 5 x 10* A¥ns but differentk] = k% (—)

as well as for lowek! = 0.5¢ (-++) and for the largek] = 1.5
(= — —). The slope of all triplet curves d = 0 is shown by the
dashed-dotted-{-—) straight line.

now kZ is kept constant whil&] varies. It is remarkable that at
these coordinates the linear asymptote Zgf at v/D — 0,

shown by the dashed-dotted line in Figure 4, has the same slope

for anyk:
3 = _3
Z— ZaD =6~D where 0= ém/kS (2.10)

If such a slow diffusion is attainable, it is easy to find fréin
the rate of the spin conversiok,, while Z(0) provides us with
kS and the argument for maxima with k. Having the latter,
one can also extraat from the height of the maximum (eq
2.9) and use it to findks = KkI/(l6no3). The low diffusion
region is not reachable.

The total recombination efficienc® = const ifkS = k] but
has a positive curvature Ilf < kI and negative in the opposite
case. UnlikeZr, the total recombination efficienc¥ is never
zero asD — 0, unless the radicals start from the contact.

II. Distribution of Initial Separations of Counterions

The diffusional dependence & is qualitatively different

J. Phys. Chem. A, Vol. 111, No. 18, 2003461

0.003 +
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0.001 1

0.000

1 Ll 1
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Figure 5. The initial RIP distributions resulting from the exponential
ionization withW; = 29.12 ns! andl, = 0.81 A at different encounter
diffusions of neutral precursordd = 104, 1076, 107, 10°8, or 10°°
cn?/s (from left to right).

whereas the quenching kinetics is given by the expression

N(t) = exp{—t/r —c [ d*r W(r) [in(rt) dt} (3.4)
The normalized initial distributions

my(r)
S my(r) o

depend on diffusion and the shapeWf(r).1%1° For ionization
in the normal Marcus region, the exponential model (eq 1.6) is
rather a good approximation. It was used in our calculations
performed with the SSDP2 progradiThe family of initial RIP
distributions that are obtained is shown in Figure 5 and confirms
once again that at faster diffusion the ions are born closer to
the contact distance. As D — =, the closest distribution takes
the shape that\Vi(r) has.

The starting distance averaged over such distributions

fo(r) = (3.5)

7= [rf(r) o

decreases witlD until ionization is diffusional, but wittD —

(3.6)

when the RIPs are the products of bimolecular plotoionization. o« it approachesm, and remains constant being under kinetic
The electron transfer proceeding with the space-dependentcontrol (Figure 6). Although in this limiy(r) coincides in shape

ionization rate W(r), results in some distribution of RIP over
interion distancesm(r), which is farther from contact the slower
is the encounter diffusion of neutral reactaris, The actual
shape of it is given by DET®16

my(r) = W) f, n(rON() et (3.1)

In polar solvents, the distribution of reactant§, t), obeys the
following equatiof’18

n=—W(r)n(r,t) + Dd2on

p2ar or (3.2)

with reflecting boundary condition

47020

or =0 andinitialone, n(r,0)=1 (3.3)
r=o

with Wi(r), the minimal separation calculated from eq 1.6 is
still larger than the contact distanceqin ~ o + 1/2.

IV. Remote Start and Contact Recombination

Since initially the photogenerated ions are always separated
(at least byl/2), it takes them some time to reach the contact
and recombine there. This time is shorter the faster i®(at
) diffusion of (at D — ) ions, which facilitates the
recombination from the remote sta?t!® In such a case, the
total recombination efficiency increases with smald, instead
of being quasi-constant at the contact start considered in the
previous section. In particular, & = kI = k, it is a true
constantZ = kJ/(4no), shown in Figure 7 by the horizontal
dashed line, whil& obtained for the noncontact start (even from
the minimal separationyi,) is qualitatively different. It grows
with D until recombination is diffusional (region D) and
approaches the constant but lower valire KJ/(47Tmin), when
it becomes kinetic (region K). The triplet efficien&t does
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Figure 6. The average initial RIP separation at different encounter
diffusion. In region D, wher& > Tmin, diffusion controls ionization,
whereas in region K, where ionization is kinetic, the separation becomes
minimal: T ~ Fmin = 7.95 A.
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Figure 7. The efficiencies of recombination from different startsat
=k! =k.=5 x 10* A%¥ns. Total recombination from the contact start
Z = kJ(4no) (— — —) and from minimal separation—, upper), as
well as from remote start distributed witlD) (a) and from the average
initial separation,F(D) (2), is shown. The efficiency of the triplet
recombination from minimal separation-( lower), as well as from
the distributed startdl) and fromr(D) (O), is also shown.

40

50

60

not experience such dramatic changes: the recombination
accelerated at slow diffusion passes the maximum and slows
down due to spin-conversion control (in region S).

So far we confined ourselves to recombination starting from
a single initial separation (the same at &jthat was equalized
to eithero or Tmin. The results were shown in Figure 7 by dashed
and solid lines, respectively. Now we turn to the initial
conditions changing witlDd and represent the results by either
filled points when initial separations are distributed according
to fo(r) or empty ones when the start is taken from a single
distancea (D) (averaged ovefp(r), which is different at any).

Our calculations address the situation when

T

D=D=67w77

(4.1)

In fact, the ion diffusion in polar solvents is a bit slower than
that of the neutral reactants and their relationship to viscosity

Gladkikh et al.

Recombination efficiencies

8

10

12

14

16

D, A’/ ns

Figure 8. The efficiencies of recombination from different starts at
KK=kl=k = 5 x 10* A%ns in slow diffusion domain. Total
recombination from minimal separatior-( upper), as well as from
remote start distributed witfy(D) (a) and from the average initial
separationr(D) (&), is shown. The efficiency of the triplet recombina-
tion from minimal separation, lower), as well as from the distributed
starts @) and fromr(D) (O), is also shown.

7, used actually and previoushdiffers a bit from the Stokes
Einstein expression in eq 4.1. The latter has just to emphasize
thatD and D, changing with viscosity, affect simultaneously
both the integrands in eq 1.23(D) and fo(D). The results
obtained are specific to particuldd = D changing with
Viscosity.

As was expected, the average yiejd,and the yield from
the average separatiop(r), are not identical, as well as the
corresponding efficiencies. However, the difference betw&en
calculated from the forme®) and from the latter®) is not
pronounced. Similarlyr calculated from the distributed starts
(a) and their average valuea] do not differ too much.
Moreover, the points do not deviate significantly from the solid
curves calculated for the fixed start frorpin. However, this
statement is only valid for the fast diffusion limit when
recombination is under kinetic or spin-conversion control and
T has already approaché&gi,. Along with it, Z approaches its
upper limit, which is the plateau of the height

ks

- 4nrt

min

This plateau is a bit lower than that shown by the dashed line,
which is peculiar for the constant stak/(470)).

The situation is rather different in the opposite limit of slow
diffusion, which is mainly studied experimentally. There the
total efficiency of diffusional recombination from the fixed start
should be linear iD, as it really is forro = Tmin (upper solid
line in Figure 8). However, the true start at such diffusion is
far away from the near contact region and moves toward it when
diffusion increases. Therefore the points representing recom-
bination from either distributed®) or average @) initial
separation lie far below this line. Hence, the diffusional
acceleration of total recombination is actually less efficient for
remote starts, drawing near with diffusion, than for the fixed
and the closest one. Qualitatively the same happens to triplet
efficiency: all related points are below the lower solid line,
though those calculated from averagg (nitial separation are
closer to it than those from distributed) initial separation.



Production of Free Radicals and Triplets

600

500 +

400~

300

Recombination efficiencies

1/2

Al ns'

Figure 9. The total (above) and triplet (below) efficiencies of
recombination obtained with contact (— —) and exponential )
approximations of the recombination layer.

V. Remote Start and Remote Recombination

As a matter of fact, there are no grounds to consider
recombination as contact, except the simplicity of the yields
calculation. There is the unified theory recipe given in ref 10
(section IX E) how to calculate the averaged yields,

Ps= f§0s(r')fo(r') d’r YT = f§0T(r')fo(r') d’r

p=1-¢s— @7 (5.1)

expressed via the partial yields of the singlet and triplet
recombination products

@d(r") = [We(r)psdr.r',0) dr and
@r(r) = S Wr(N)sr(r.r,0) &r (5.2)

that can be found at ars(r) andWx(r). All that we need is
the Laplace transformations of the Green functipsgr,r’,s)
and pst(r,r',s), which obey the set of equations for RIPs

J. Phys. Chem. A, Vol. 111, No. 18, 2003463

_ 190 2 rclr d —rJr _
rnS_ksmT 3ksmS+D28r are Mg
Wy(r)ms + Won(r )N (5.4a)
_ 190 2 rc/r d —rJr _
- kSmT+3k$rnS+D28r 3re My

Wi(r)m; (5.4b)

identical to eqs 9.6 from ref 10 but with reflecting boundary
conditions (andng(0) = my(0) = 0). Heren andN borrowed
from egs 3.2 and 3.4 determine also the initial RIP distributions
egs 3.1 or 3.5. Taking the integrals

o) = [ [Werymg(r 1) & dt = y g,
$r(r) = 77 [We(D)my(r.t) & ot = iy

we get the photoionization yields of the singlet and triplet
products. They differ fronps and¢r(r') by only the multiplier

CKT

w=cfmyn)dr =17 (5.5)

1-79

which is the RIP yield related to the fluorescence yigldnd
Stern—Volmer constant as usu#.

The recombination rates are usually more extended than the
ionization one due to the larger exergonicity of the backward
electron transfer. To account for this feature using the expo-
nential models (eq 1.7), we assumed that

g > 1, (5.6)
Under this condition, the total efficiency of remote recombina-
tion is a non-monotonous function of diffusion (red line in
Figure 9), contrary to what was obtained in the contact
approximation (the blue line there). This is due to diffusional
deceleration, following the diffusional acceleration of the
recombination. At the greatest diffusion, the initial ion distribu-
tion coincides in shape withVi(r).1° Under condition 5.6, it
appears to be narrower than the recombination layer common
for the singlet and triplet exponential rates (eq 1.7). Therefore

subjected to spin conversion and remote double channelthe recombination is weaker the faster the ions get rid of this

recombination (eqs 9.27 in ref 10):

—o(r — r")l(4nr®) + SPss= KPst — 3kfPsst LPss—

Wq(r)pss (5-3a)

SPst = —kfst + KPss+ L Pst — Wi(r)Psr  (5.3b)

The encounter diffusion operator

L = "‘1 a Zerc/ra
ar

efrclr
2 ar

should be used in eqs 5.3a,b together with the reflecting

boundary conditions. Solving these equations for only highly

polar solvents, we ignored the Coulomb interaction, setting to

zero the Onsager radius.

The results presented in Figure 9 were actually obtained using

the program Qyield developed by Dr. Krissinel (see http://
www.fh.huji.ac.il/ krissinel/software.html). It allows the straight-
forward calculation of the singlet and triplet pair densities,
obeying the set:

layer interior. Passing the maximum, the total recombination
efficiency Z shown by the red line falls off with the further
increase oD.

Finally it approaches the plateau, which is lower than the
kinetic one reached in the contact approximation (blue line).
This pseudo-kinetic valueZ., can be found from the fast
diffusion approximation fokp:

[owi) dr
5~ PONO AT

JWi(r) d*r

whereg(r) is given by expansion 3.5 in ref 21 valid for a single-
channel recombination:

=1- at D—o

Z,
5 (5.7)

1+2,1+212 AL+ 06+ 21) e

1+96

pr)=1— (5.8)

Here

x=kJky, A=Ixl20, 0= (r—o)lo
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Figure 10. Fitting the theoretical efficiencies—) to the real
experimental data for totah{ and triplet ) recombination efficiencies,
using the exponential models for both ionization and recombination
rates. Parameters obtained from the best fit are the followig=
29.12ns, We=77ns1=1.2W, |, =0.81 A lr=1.24 A ks=0.75
ns%, ando = 7.5 A. Analogous to Figure 3.75 in the ref 19.

wherek, = [Ws(r) d® is the singlet recombination constant,
while the diffusional recombination constaks = 470D, as
usual. Although this expression was derived for only the singlet
recombination at fast diffusion, it is applicable to our double
channel model as well, since Bs— o the triplet recombination
being under spin-conversion control is finally switched off. As
follows from eqgs 5.7 and 5.8

7 = W,
1+ 24, + 21,9,
A1+0+2) e e 1+ 6)dd (5.9)

S+ 20+ 227

wherel, = 1)/(20). Z is the height of the red plateau, which is
really a bit lower than the blue one, appearing in the contact
approximation: lin—. Z = Ko/(47Tmin).

However, the principle difference between remote and contact

recombination is seen only in the slow diffusion limit. There
the high peak irZ and related increase # makes it more flat

near the maximum. Since this diffusion region is the same as

in real systems, it is worthy of special attention. In Figure 10,

Gladkikh et al.

VI. Conclusions

Such an excellent fitting does not prove that the theory is
actually the best. There are two essential weaknesses that we
hope to eliminate in the near future.

eThe exponential models for the ionization and recombination
rates should be substituted by the Marcus formulas for these
rates, which relate them to the true free energies of the reactions,
as well as to the reorganization energy in a particular solvent.

eThe true hyperfine interaction mechanism of spin conversion
should be substituted for the phenomenological rate model of
spin transitions in the RIP.

«The difference in size and encounter diffusion coefficients
of ions and their neutral precursors should be taken into account
especially in polar solvents.

Hopefully these improvements will enable the theory to
correspond better with the fast diffusion experiments and relate
the spin-conversion rate to the true values of the hyperfine
interaction in particular radicals. However, this will not change
our main conclusions:

eThe contact reaction approximation can be reasonable for
only heavy particles and proton transfer in liquids, whereas the
electron transfer either forward or backward is not contact.

eThe shape and width of the remote transfer rates strongly
affect the yields of reaction products, changing essentially their
diffusional dependence.

The unified encounter theory is the universal instrument for
investigation of any transfer at any diffusion rate.
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Abstract

The recombination/separation of the radical pair from its singlet and triplet state is studied. The spin conversion in a pair is consid-
ered as a stochastic (incoherent) process, assuming that the recombination of both singlet and triplet radical pairs is contact. The quan-
tum yields of recombination products and free radical production are calculated for any initial separation of radicals in a pair.

© 2005 Elsevier B.V. All rights reserved.

1. Introduction

The pair of radicals created in either of its singlet or trip-
let states can recombine from there in the singlet or triplet
products or be separated with quantum yield ¢:

Scheme 1
D434 <3[D---Al - D+4 (1.1a)
17 @
D+A«'[D---A] = D+A4. (1.1b)

The quantum yield of recombination through either the
singlet or triplet channels (or through them both) is
1 — ¢ where the quantum yield of free radicals
1

- 1+z/D’

Generally, the recombination efficiency Z = Zg + Zy but it
coincides with that for a single channel, Zg or Z, if an-
other channel is switched off [1]. The spin conversion in
the radical pair allows the recombination to proceed in
whatever channel is switched on. The conversion is carried
out by spin relaxation with transversal and longitudinal
times 7, and T as well as by mixing of the S and T states,
with a frequency

¢ (1.2)

* Corresponding author. Tel.: +972 8934 3708; fax: +972 8934 4123.
E-mail address: cfbursh@wisemail.weizmann.ac.il (A.I. Burshtein).
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WA — WB
A (1.3)

Here, w = gfH/% is the Zeeman frequency in the magnetic
field H, which is different for the two radicals in a pair, A
and B, provided they have different g-factors (Ag=ga —
gp # 0). If T} = oo, only two states, S and Ty, are worthy
of consideration because the other two, 7', and 7_, remain
out of the game.

This particular case of a two-level system is equally good
as a model of spin conversion induced by the hyperfine inter-
action (HFI) in high magnetic fields [2]. This model was the
subject of a detailed investigation in our recent work [3]
where the pair was assumed to be initially separated by dis-
tance r = ry but recombines only at contact (at r = ¢) with
the rate constants k° and k_ for alternative channels. If the
start is also from contact (ry = o) and from the singlet state
of a pair the recombination efficiency was shown to be [3]

Q=

Zs o T
5%—25 at kc —07
ke T _ 7S _
Z = 2= 0 at kc _kc —kc, (14)
z S
El l+aizl/D:ZT at kc :07

where z, = kf /4no, zy = kCT /4no and D is the coeflicient of
the encounter diffusion of radicals in a pair. The results ob-
tained for the contact recombination through single chan-
nel in [2], as well as in earlier work [4], were shown to be
identical with that presented in Eq. (1.4) [3].
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Generally, the important parameter « is a complex func-
tion of diffusion, the recombination constant and conver-
sion frequency. The latter is responsible for the magnetic
field effect in the case of the Ag-mechanism of spin conver-
sion [5]. Only in the limit of stochastic (incoherent) conver-
sion the expression for o becomes rather simple and does
not depend on recombination

n= 2251+ @12)
2
1 .
214 T—Jr ko provided QT, <« 1. (L.5)
2
Here, 14 = ¢°/D is the encounter time while
ko = Q*T, (1.6)

is the rate of stochastic spin conversion. This very rate has
to be used further on because the present work is also con-
fined to the incoherent spin conversion. However, this time
we will consider the general four-level spin system which
represent the radical pair with arbitrary 775. This pair, sub-
jected to double channel recombination (kf #0#kD),
starts from singlet spin state and any initial separation of
the radicals in a pair (rg > o).

2. Diffusional kinetic equations
The basic set of four equations relates the singlet state

population, ps, and the three populations of the triplet
sub-levels pg, p+ and p_ [3,4]

k—i—l ! k—l—l—i—l
oT2 2T1p0 0 27, Ps

+p_
+ P g, (2.1a)
11 11
(ko-i-?z—z—Tl)Ps_(ko-i- +2_T1)
+p_
+pETp +Lp,, (2.1b)
_Pst Py P . _Pst P
pr="gp o tley and po =" T1+’Lp’
(2.1¢)
where
L= D——ﬁ vt O )k (2.2)

r2 or ar

is an operator of the encounter diffusion in the inter-parti-
cle potential U(r). For an ion-radical pair this is the Cou-
lomb interaction U(r) = —r./r, with Onsager radius r, = e*/
ekpT (at temperature T and dielectric constant ¢).

The set of equations (2.1) should be solved with radia-
tion boundary conditions at contact

i:+70:77
(2.3)

jpS|r:g:k§pS(Gvr07I): jpi|r:a:k3pi(a7r07t)7

where j(r) = 42D 2eV")/"7 is an operator of flux at dis-
tance r. The initial condltions select the spin state where
the radical pair was born at 1 =0

o(r —ro)

a2 pi(r,70,0) =0,

i=4,0,—.
(2.4)

Neglecting the Coulomb and any other interactions between
radicals, we set U(r) =0 and turn the diffusional operator
(2.2) to the simplest form: Lp = DAp = D(p” +2p’). Then
making the Laplace transformation of equations (2.1) with
initial conditions (2.4) we obtain the set of uncoupled

ps(r,ro,O) =

equations for the r-dependent quantities p, = [ p,(r,ro, 1)
exp(—st) dt
2 s o(r —ro)

no L S 2.5
p +rp o’ 4D (2.5)
~ 2 s+2(k0+1/T2)~ 5(7‘—7’0)

" =2 2.5b
Pat rp D P4 4nr2D (2.30)
2., s+2/T . o(r—ry)

/! /

Lo Sy = Y 2.
Py rpa D P 4m2D ’ ( SC)
2 1/T
s (2.5d)
where
pP=pstpytpstp, Ps=Ps— Pos
Py =PstPo—Pr =Py Pp=PpPsr— P

On the other hand, these variables relate to each other
through the boundary conditions

op kS + 3k! K — k!
4TCDF25’.:6:TID(U,VO’0+ B pA(O-erat)
K — k!
+ 4 pa(mro,t)v (2.621)
dp kS — kg o Tk
4nDr26—rA _ 7] p(o,ro,t) + 3 p4(0,70,1)
kS
+ 4 p:x (o,r0,t)? (26b)
op, KS it S T
4‘I'IZDI"2 ap]/‘ r:a:%p(o-ar()vt)—’— < 2 CpA(Uar07t)
kS + 3k!
+ Tp(x(a,rg,t)? (260)
0
4nDr 2 ali.ﬁ — k;rpﬁ((L r07t), (26d)

The last equation is separated from the others and can be
omitted because the quantum yields we have to calculate
do not depend on py but are expressed only through the
other three variables.

The triplet products are truly determined by only the
triplet sub-level populations integrated over time

(rDl(ro) = kZ[p0(07 7070) + ﬁ+(03 7‘070) + ﬁ7(67 7”0,0)]
3. 1. 1.
:ch Zp(O-?rO?O) _EpA(GaroaO) _Zpoc(avrovo) .

(2.7)
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As to the free radicals, their yield is actually p(r, ry, 00)
integrated over space

o(r0) = [ limsp(r,ra.s) &'
[5(c.70,0) + (.70, 0)

(2.8)

(2.9)

As to the last quantum yield, for singlet products, it can be
obtained from the first two and the conservation law [1]

@5(ro) = 1 = @ (ro) — @(ro). (2.10)
It is common and useful to represent all the quantum yields
as follows [1,6]:

D VA, Zs
n . 7 Ot =7 Vs = ~>
D+7Z D+Z D+Z
where Z1 and Zg are the efficiencies of recombination from

the triplet and singlet states of a pair and Z = Zt + Zg is
the total recombination efficiency.

0= (2.11)

3. Solution of the problem

From the structure of equations (2.5a)—(2.5¢) we see that
their solutions are the generalized functions [7] continuous
in the whole r-domain, but their derivatives have disconti-

Table 1
General solution for the set (2.5)

r<ro r>To
p (ar/r)exp{—rao/a} + (ax/r)exp{rao/o} (as/r)exp{—roo/c}
N (b_/ryexp{—raplc} + (ba/r)explraa/c} (bs/r)exp{—ranla}
Dy (cr/r)exp{—ro,/a} + (cafr)explroy/o} (cafr)exp{—ra,/a}

into account that at r =ry all the functions defined at
r <ry must be sewed together with their prolongations at
r > ro. With these nine constants one can get the exact val-
ues of p(r,ro,s), pa(r,ro,s) and p,(r,ro,s) which are the
very complex expression given in Appendix A. Making in-
verse Laplace transformation of them one can recover the
kinetics of geminate recombination.

Fortunately for the calculations of quantum yields from
Egs. (2.7) and (2.8) we need only the densities p(a,rg,0),
pala,r0,0), p,(0,r9,0) that can be easily obtained from
Eqgs. (A.1)—(A.3) setting r = ¢ and s = 0. In this particular
case only two parameters characterizing the spin conver-
sion remain non-zero:

% =0, op= 2%(1+k0T2):oc, o, = 2%:[3_

(3.2)

The first, o, coincides with that in Eq. (1.5) although the
latter was introduced in the two-level theory assuming
T, = oo. In the present four-level theory the longitudinal
relaxation is taken into account by a newly introduced
parameter f§ # 0, but all the magnetic field effects are still
accounted for by a, through kg defined in Eq. (1.6)

K] o1 Bkl KT g
- 1 [ﬁ +k;) & L] i) 4 [az(kT—JrkD+ 2p ]eﬂl v+ P
p= _4nDr0 a[ﬁnpfﬂﬂc +2+k k! } +ﬁ<2+3k +k! ) +2[1 4 ke JrkSkT] ’
ke +k kD

; k& B(1-ro/o Kkl 3T kS 4k, KL +k w(l—ro/c
pa= ! eﬁ "7+ B kT+kD T [ﬁ Wik T2 } e
AT 3 Ly )

4nDrq d[ﬁ%-ﬁ-Z—&-‘ }+B(2+%k+k>+2{1+L : H}

K=k o(1—ro /o kS —k! kS -k 3k kS +4kp | kI +3kS+4kp | Lp(1-ro/o
5 = 1 o e?(1=r0/%) TSy T R T [ 26 +hp) 2o }e /o)
o

kT +k

nuities at r = ry. At any r # ry the equations are homoge-
neous and their solutions take into account that any
p(r = 00) = 0. They are displayed in Table 1,

where
oty = a\/s/D, oy =0+/(s+2(ko+1/T,))/D
o, =a+/(s+2/T)/D. (3.1

The numerical constants a; 53, b153 and ¢;, 3 have to be
found from the boundary conditions (2.6a)—(2.6¢), taking

 4nDr, oc[ﬁZkD+ng+k§—|—2+k+k} +B(2+3A +k)+2{1+k+kT+%} ’

2
kD

where
e, 2kp(B+ 1) +3k! +1k3 ﬁkf+kT+2h)
k! + kp kp + k!
3k + ke + 4k
2kp '

Substituting these results at f =0 into the general defini-
tions (2.7) and (2.8), we reproduced the expressions for
¢@ro) and ¢@(ro) that have been derived for the two-level
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system in [3], by a completely different method: see Egs.
(4.3) and (4.4) in this work.

4. Contact start
In the vast majority of analytical studies of the phenom-

enon, it was assumed for simplicity that the radicals are
created at contact distance ¢ [1,2,4]. To compare with them

kT
2kD

o
T + ﬂ T
l+a+k, /kn 2(1+4p+k,/kp)

The efficiency of recombination to the singlet one, follow-
ing from Egs. (2.11) and (2.8), is also spin-dependent:

Zr/D

] . (4.6)

k|t 2(1 4 k] Jkp) B
Zs/D— T - T )
2kp | 1+o+k/ko  2(1+p+k; /kp)

we have to do the same, setting ry = ¢. In this particular (4.7)
case, the last formulae truly become much more simple:
kK +kp (148) kL +k
2 AL .
p _E Qbkp 3L +4kS b I +k b 31( +k 21 K4kl kSkT ’ ( 1a)
o B 2 (2 ) + TR L
KT +kD

2 +
Pa= kp 2kp+3ke +5kS kS 4T ! 343 4] Skl | S (4.1b)

D“[ﬁ e+ 2 }+ﬁ(2+ )+2[1+ bik 1 & ]

) o 4 Ko +kD
= (4.1¢)

kL ke

Using them in Eqs. (2.7) and (2.8) we calculated the quan-
tum yields and deduced from them the recombination effi-
ciencies. The expressions for any of them are always much
simpler than for the corresponding yields

iBke — k)
1+ B+kl/kp

soke = ke)
1+ o+ k. /kp

115
z/p= ;- [k + ] . (42)

In the particular case of a two-level system (f = 0), the gen-
eral expression (4.2) reduces to the following simpler
formula:

S

a(ks — k) ] (43)

Z/D =<1 ;
/ kp l 265 (o4 1+ k! Jkp)

found in [3].

In the pioneering work of Schulten and Schulten [8] the
spin-conversion was assumed to be separated from the in-
ter-particle dynamics due to the equality of the recombina-
tion constants

K=kl =k (4.4)

In this particular case, the total recombination efficiency
(4.2) does not depend on the spin-conversion at all and is
equal to the conventional parameter z of the simplest expo-
nential model, as in Eq. (1.4) [5,6]. That is

1

1+2z/D

at any ko, that is at any magnetic field.
At the same time, the recombination to the triplet prod-

uct is always spin dependent. As follows from Eqgs. (2.7)
and (2.11):

Z=z and ¢ =

(4.5)

_Ea{ﬂZkD+kT+zc+2+k+kj|+ﬁ(2+3k+k>+2[l+k+kc+ksij|-

As always Z = Zt + Zg, and each of the components is dif-
fusion dependent.

5. Relation to other theories

In the particular case of a two-level system (f = 0) the
result (4.6) reduces to that obtained in [3]
k! 2
Zojp=te ___H2___
kp (1 +a+k, [kp)
On the other hand, rather different result was found earlier
in [1]

at T] = Q.

(5.1)

k! 30 /4
Zy/D =" LT at Ty =T, =T,
kD (1 —+ o +kc/k1))
where o is expressed through the spin-conversion rate k;
defined in [6]

1
oo = / 4ks‘fd = \/2‘5(1 <TO+

The last results were derived within the simplified model of
spin conversion used in a number of previous works [5,9-
12]

(5.2)

29;“). (5.3)

A-oD) B O D]

%
25 bk
[4---D] [3A*---D]

(5.4)

According to this model the spin conversion equally mixes
the singlet state with all three sub-levels of the triplet one.
That is the reason why the last result differs from the
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previous one. The simple analysis shows that this result fol-
lows from the general formula (4.6) provided that:

Q=H=0 and a:ﬂ:\/ZTd/To. (55)

Hence, in the extreme case of equal relaxation times (usu-
ally presumed), the model (5.4) is exact in the zero mag-
netic fields provided the recombination rates through
different channels are equal as in Eq. (4.4). Under this con-
dition the total yield ¢ from Eq. (4.5) can be used as an
argument (instead of diffusion) to study the other yields
as functions of ¢ changing in the finite limits, 0 < ¢ < 1
[8,3]. In Fig. 1, the diffusional dependence of the yields pre-
sented in such a way demonstrates the non-monotonous
behavior of ¢t unlike ¢g, decreasing monotonously with
diffusion. The latter is the difference between the diagonal
and the curves which represent ¢t. One of them (at a = f§
coincides with that resulting from the model calculations
of ¢, while another (ff = 0) is the same quantity exactly
calculated for the two-level system and shown in Fig. 2
of [3].

In moderate fields the spin-conversion parameters, & and
oo can be expanded in QT < 1

a1+ Q°T%)2),
a ~ B(1 + Q*T3/3).
In the first-order approximation with respect to Q° T3, we

have from the exact expression (4.6) as well as from its
model analog, Eq. (5.2), one and the same result

1+ k! Jkp
1+ B+ k! Jkp )

(5.6a)
(5.6b)

_ ke 3p/4 QT3
ko 1+ B+ k! Jkp 3

Z1/D

where f§ = 25

7 (5.7)

1.0 T T T T T T T T

Yields
A

0.4- Bs

0.2 1 .

00 T T T T T T T T T
0.0 0.2 0.4 06 0.8 1.0

¢

Fig. 1. The partition of all the products of double-channel recombination
with equal rates into three components: the free radicals quantum yield ¢,
the yield of triplets ¢, and that of singlets, ps=1— ¢ — 1. At =0
and zero field the present theory confirms the results following from the
model (5.4) while at =0 it reproduces the situation when only two
interacting levels remain in the system [3].

0.46

0.45 1

Zlz

0.44 -

0.43

0.0 0.1 0.2 0.3
242
QT

Fig. 2. The single-channel recombination efficiencies, from the triplet
(above) and singlet (below), as functions of the magnetic field in square
(@ ~H)at D=12x10"° cm®/s, c=7A, Ty=0.1ns and z=1.14x
1073 em?/s. The exact results given by Eqs. (4.6) and (5.8) are represented
by the solid lines and their linear interpolations, Egs. (5.7) and (5.11), by
dashed lines.

Hence, in the lowest-order approximation the simple model
(5.4) describes the magnetic field effect as accurate as the
present theory. This approximation is quasi-linear in
Q% ~ H? until Q*T? < 1 (Fig. 2).

Another situation appears if the triplet channel is
switched off. When k! =0 the recombination proceeds
through the singlet channel alone and the general formula
(4.2) reduces to the particular one

z[24« B K>

Z = = Z = ¢ .
2{1—1—0( 2(1+ﬁ)} S 7% ne

This is exactly what was obtained in the first single-channel

theory of Mints and Pukhov [4]. The efficiency of recombi-
nation in the two-level system [3] follows from here at § =0

(5.8)

1 +4a/2 B
Zy=z oo p=0. (5.9)
A similar result was obtained for the four-level model in [1]
1+ 0o/4
Zy=z—-—. 1
S z 1 T (5 O)

In the zero field (when Q = 0), the latter result coincides
with that following from the general Eq. (5.8) at o=
o9 = B. In moderate fields, the exact and model results
are also identical but in the lowest-order in Q°T3 (see
Fig. 2)

_Zl+ﬂ/4_QZT§ B
I I 4 (1+p?|

This provides evidence that the simple model (5.4) is prac-
tically sufficient for studying the radical reactions assisted
by an incoherent spin conversion.

It should be stressed that Zt from Eq. (4.6) remains the
same at any kf However, this is not true regarding the triplet

(5.11)
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0.0

Ll T T T 1
0.0 1.0x10° 2.0x10° 3.0x10° 4.0x10°

D, cm?ls
Fig. 3. The diffusional dependence of the triplet quantum yield at
=0, &5 =05k, k¥ =k! (from top to bottom) at QT,=0.14 and

kg =10* A’ /ns. The rest of the parameters are the same as in the previous
figure.

quantum yield ¢, = Z¢/(D + Z). In particular, ¢, = Zy/
(D + z) if the recombination rates are equal (kf = ch; Z=
z =const). In this case the diffusional dependence ¢(D)
duplicates the bell shape of Zt. On the contrary, at kf =
Zs = 0, when the singlet recombination channel is switched
off, Z= Zr, and the triplet yield ¢, = Z/(D + Zy) falls
monotonously with D, from 1 to 0. Fig. 3 shows how the lat-
ter transforms to the former when &% increases.

6. Magnetic field effects

Both recombination efficiencies (4.6) and (4.7), depend
on magnetic field through the single parameter o contain-
ing Q ~ H. Therefore, the magnetic field affects also the
quantum yields (2.11) but only the H-dependence of the
free radicals quantum yield was studied experimentally
until now. The conventional measure of the magnetic field
effect (MFE) can be represented as follows:

@(H) — ¢(0) _ Z(0) — Z(H)

M=""%0) ~ Dz

(6.1)

The incoherent description of the field induced spin-conver-
sion is valid at rather low or moderate magnetic fields when

AgBHT,\’
QZT§<7gl; °> <1

Under this condition, we can use the lowest-order expan-
sion of Z in this parameter.

For the particular case of single-channel recombination
from the triplet state, Z = Zt is given by expression (5.7)
linear in Q°T32. The corresponding MFE is also linear with
the same accuracy

(6.2)

ke PO+ K k) @13
ko 4(1 + B+ k. [kp) 1+ k! Jkp + B(1 + 2k! Jkp)
at kS =0. (6.3)
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T

Fig. 4. The magnetic field effect for single-channel recombination through
either the triplet (below) or singlet (above) states in the linear approxi-
mation regarding Q> ~ H? shown by the dashed lines in Fig. 2.

In the opposite case of recombination via only a singlet
channel, the linearized function (5.11) should be used in-
stead in Eq. (6.1) to get the following:

kKB T
ko 4(1+B) 1+ &3 fkp + B(1 + 1K /kp)
at k! =0. (6.4)

As can be seen from Fig. 4 the MFE has the opposite signs
for the considered alternative limits. Being linear in Q*77 it
is quadratic in the magnetic field H. However, the scale of
MFE is limited to a 1-2% within the field interval (6.2) cov-
ered by the incoherent theory. In reality much stronger
fields are available and the MFE can reach 25% [18]. For
a quantitative description of such large effects, the general
coherent theory must be used instead as has been done in
[11]. The present theory is exact for spin conversion in a
zero field but only an approximation for the non-zero field
of low and moderate strength.

7. Conclusions

We present here a general solution for the problem of
singlet radical pair recombination at contact through one
or two parallel channels, assuming that it is assisted by
incoherent spin conversion executed by spin relaxation
and the Ag-mechanism. It reproduces all the efficiencies
of contact recombination obtained earlier within the rate
description of spin conversion as well as their diffusional
and field dependencies. It was shown that the exact and
model treatment of the problem lead to the results which
are identical in the lowest-order approximation in the mag-
netic field. Our general results, valid at any initial separa-
tion of radicals in a pair, ry, can be averaged over the
initial distribution of these distances f{ry) if it is known.

The main restriction of the theory is the stochastic (rate)
description of spin conversion in a non-zero magnetic field.
It is justified if spin relaxation in radicals is much faster
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than the difference between their resonance frequencies.
This condition is met in a number of transition metal com-
plexes with strong spin—orbital coupling [13-15], where
T> =~ Ty ~ 10 ps. Quite the opposite is the situation with or-
ganic radicals whose spin relaxation is about a few ps while
the frequency of the hyperfine interaction responsible for
spin conversion is higher than the relaxation rates. This is
the coherent conversion that was widely studied, as well
as the magnetic field effects resulting from it. However, to
the best of our knowledge all these studies were confined
to single channel recombination. The double-channel
recombination assisted by coherent conversion is still open
for discussion.

Another restriction is the contact approximation of
recombination. In fact, the latter is distant at least for elec-
tron tunnelling in radical-ion pairs, at high exergonicity of
their recombination [16,6]. This limitation can be overcome
with a numerical solution of the problem, as it was done in
[17,6] for the particular tunnelling rate, W(r — o).

It also should be mentioned that the most of the authors
confined themselves to a single channel recombination of
singlet born radical pair, whereas Mints and Pukhov took
also into consideration the radical pair born in either of the
triplet sub-states. Such an initial condition, as well as the
start from the equally populated triplet sub-states, is wor-
thy of separate study which is now in progress.

Appendix A

After long and cumbersome calculations, we obtained
the following results:

cy =—1+o0y— K,
by =1%oy — ¥,
de=—-1+a, —«.
If there is no recombination k£ = k! = 0, x = ¥’ = 0 and all

o(r,ro,8), pa(r,ro,s), p,(r,ro,s) reduce to the correspond-
ing Green-functions

p= _ 9 e~ lr=rolx/o _ 1 —a e%0(2=(r+ry)/0)
8nDoyrry 1+ o ’
o —o
P —|r=rolaa/c A Loa(2—(r+r9)/0)
=——|e ——e¢ ,
Pa 8nDoprry ( 1+ op )
5= (errble _ L= % o)
* 8mnDoy,rr 14 o
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The contact recombination from both singlet and triplet states of a radical pair is studied assuming that the
spin conversion is carried out by the fast transversal relaxationAanchechanism. The alternative HFI
mechanism is neglected as being much weaker in rather large magnetic fields. The magnetic-field-dependent
quantum yields of the singlet and triplet recombination products, as well as of the free radical production, are
calculated for any initial spin state and arbitrary separation of radicals in a pair. The magnetic field effect is
traced and its diffusional (viscosity) dependence is specified.

1. Introduction o DA MDA Dy A (L1a)
The most general diffusional theory of contact but spinless T I 0 0

geminate recombination of an ion pair was developed by Hong

and Noolandt Later on, the theory was developed furtherina D+A— YD . A—D+A (1.1b)

few workg-3 and extended for the noncontact recombination kS

from any starting distance between reactéhfsee also section . L
VIIB in the review). Here, T, is the transversal relaxation time assumed to be the

. . . . same in both radicals and
However, as was recognized long ago, in pairs of radicals or

ion radicals the recombination is affected by spin conversion 1
between initially populated and other spin states. Such a Q= %AgﬂOH (1.2)
conversion is carried out by the spin relaxation and/or some

mechanisms acting in a magnetic field. These are Alge Here, o is the Bohr magnetom\g = g+ — g- whereg: and
mechanism of spin conversion in pairs of radicals having g areg factors of radical ions in a pair artd is the external
differentg factors and the mechanism of the hyperfine interac- magnetic field.

tion (HFI) between the electron and nuclear spins if any. The  Unlike the majority of our previous works reviewed in refs
HFI mechanism alone was studied a number of times assumingg and 12, here, we do not assume @4, < 1, allowing the

that the radical recombination proceeds via a single channelspin conversion to be coherent in a large field. The best
(either singlet or triplet}. This is a situation typical for the  analytical solution of this problem valid at agywas obtained
radical pairs with such long spin relaxation timésand T, by Mints and Pukho'? but only for a single-channel recombina-
that the corresponding ratesTi/and 17; are negligible in  tjon of a radical pair (RP}just from its singlet state to the
comparison with a rather large HFI constaatJust recently,  ground state of the product. Unfortunately, the authors did not
HFI theory was extended for the double-channel recombination present the evaluation of their results, and to generalize them
which proceeds into both singlet and triplet products though in for the double-channel recombination, we have to derive
a zero magnetic field.Here, we are going to do quite the everything from the very beginning.

opposite: neglecting HFI in comparison with the fast transversal  This goal will be reached with a method disclosed in the next
spin relaxation I¥,, we will study the magnetic field effect  section.

(MFE) produced by th&g mechanism of spin conversion. The

spin relaxation really dominates over HFI in transition metal Il. General Formalism

complexes with strong spirorbital coupling?~1! The exact
solution of this problem will be obtained analytically assuming
that recombination from the singlet and triplet states of the

The density matrix of the radical pair depending on the inter-
radical distance and timet obeys the following evolution

inAS,16
radical pair proceeds only at contact, with the constihiend equatio
k!, respectively. Provided\T, < 1 is really negligible, the dorl) - N )
theory is valid at arbitrary magnetic fields though it takes into i Lo(r.t) +_7p(r,t) — W(r)p(r.t) (2.1)

account only theAg mechanism of spin conversion.

The pair of radicals created in either of its singlet or triplet with a reflective boundary condition at the contact of radicals
states can recombine from there in the singlet or triplet productsr = ¢
or be separated with the quantum yietd

Je(rl—,=0 (2.2)
*To whom correspondence should be addressed. E-mail: " ) ) ] ) )
anatoly.burshtein@weizmann.ac.il. Here,L is the operator diagonal in the Liouville space which
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describes the relative stochastic motion of the radicals, Wyhile
is a flux operator. As ta/ this is the Liouville operator which

consists of the rates of the paramagnetic relaxation and the spin

transitions induced by the magnetic field. The rate opet(oy

represents the radical recombination depending on the distance

between the radicals, The recombination occurs from either
the singlet or triplet state of the radical ion pair (RIP) or from
both of them.

One can represent the Laplace transformation of the solution
of eq 2.1 as

p(rres) = éo(r,ro,s)po - féo(l’,l",S)\?V(r')f)(r',ro,s) d:(”rz' )

wherepo = p(r,ro,0) andGo(r,fo,t) is the Green function obeying
the following equation

AG,(r.rot)

T LGy(r rot) + 78,1 rob),

Gy(r.r,0) = (S(r—_rzro)é (2.4)

whereE is an identity operator. It is convenient to represent
the operator Green function
Gy(r,rot) = €”'p(r,rot) (2.5)

via the scalar analogug(r,ro,t), which obeys the conventional
diffusional equation with evident initial and boundary conditions

Ap(r,rot)

at

or —ry) o

= Lo, 9100 == —

b or r:(i_
(2.6)

The sole restriction of the present theory is the assumption
that the recombir)ation takes place only at contact, that is, that
the rate operatoW(r) is

. O(r — o)
Q Aro”

where Q depends only on the rate constar$ and k.
Substituting this expression into eq 2.3, we have

p(riros) = éo(reraS)Po - éo(r,o,S)Qf)(o,l’o,S) (2.8)

This is a closed expression for the contact density matrix,
p(o,ro,9). Resolving it we obtain

W(r) =

2.7)

P09 = [E + Gy(0,0,9Q] 'Cy0r090,  (2.9)
This important result was obtained by Purtov and Doktétov
and efficiently used in a recent investigation of the spin
conversion induced by the HFlI mechanig&m.

The quantum yields of the singlet and triplet products of
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2T, 'T,) T, 2T, 2T, 2T,

111 (1,1, L1 1
T, 2T, or, ' T,) 0 2T, 2T,

1
0 0 -=0 0 0

Tl
Q Q o -2 0 o

T2
1 s R
2T, 2T, T,
1 1 1
2T, 2T, o o 0 T,
2h2)

whereT; and T, are the longitudinal and transversal times of
paramagnetic relaxation, while the mixing of the S agdtates
occurs with a frequency2 from eq 1.2. The recombination
operatorQ in the same basis takes the form

K0 0 0 00
0 ko 0 00
k2 + K
00 > 0 00
QZ T (2.13)
000 kfer"coo
000 0 kI 0
000 0 0 k!

By finding G(r rot) from egs 2.5 and 2.6 and substituting
its Laplace transformation into eq 2.9, one can solve this matrix
equation usingQ from eq 2.13. The elements of the matrix
obtained determine not only the partial yields of the recombina-
tion products from eqgs 2.10 and 2.11 but also the yield of the
separated radicals which escape recombination and become free

@(ro) =1 — @yro) — @((ro) (2.14)
We usually represent all the yields as folld#%
__Db_
" b+z
__4
"Tbtz
zZ
Ps=p1z (2.15)

whereZs andZ; are the efficiencies of recombination through

geminate recombination are defined through the componentsthe singlet and triplet channels, respectively, while

of the matrix 2.9
o) = k?f’ss(a 0,0)

@ro) = kI[ﬁTDTO(OIr@O) + br 1 (016:0) + pr 7, (0:1,0)]
(2.11)

(2.10)

In the Liouville space basipés p1s1o PpsTo JpsT0 PT_T_,
pt,7.), chosen by Mints and Pukhd¥we have

Z=7.+27
is the total efficiency of geminate recombination.

I1l. Exact Solution of the Problem

In our previous article, we solved the double-channel problem
of geminate recombination assuming that the spin conversion
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is incoherent which is the case @fT, < 1.18 This limitation
was obviated by Mints and Pukhé%¥who solved the problem
exactly (i.e., generally, for coherent spin conversion) but for a
single (singlet) recombination channel, wh&rn= 0 while Zs

= Z # 0. Here, we have to do the same but for the double-
channel recombination when bofth and Zs are not zero.

As the first step, one has to specify the exponent operator

e’'in eq 2.5 that was found to be the following

ot
TA+ A 0 -sin(Xt)e?= B B
A 0 sinX@e®= B B
0 0 e’ 0 0 0
Sm(zzgt)efzw2 75"‘(2906—2/5 0 cos(th)eﬁZUTZ 0 0
B B 0 o C, C.
B B 0 o0 cC. C, J
(3.1)
where
_ 1,1 oy, COS(R2) o,
A, 4+ 7€ 5 ¢
1 1 o7
B=>—-e M
2~ 4°¢
_101 am 1 vy
C, 4+ 7€ + 5€

In the particular cas&, < T; = «, we haveB = C, = 0 and

the rank of the problem reduces to44 and becomes formally
identical to the case of spin conversion via the HFl mechanism
at the highest field&? provided the exchange splitting of the
singlet and triplet is negligible. For the particular case of

incoherent spin conversion, the same problem was solved

recently in refs 20 and 21.
Solving eq 2.6 and using the result in eq 2.5, we calculated
exactly the Laplace transformation of the Green operator

Gy(0.76,0) =
F P QO F P Q QL FE P F P
Tyt P2 g 22 r__2
it 2t s 27372 2 4 4 4 4
F P QQF P Q Q, F P F P
Ty 2t P2 1o X2 r__2 F__z2
472 2 273t 2 4 4 4 4
0 0 P, 0 0 0
2 2 0 & 0 0
4 4 2
E_P E_P oo F P PhE P P
4 4 4 4 4 4 2 4 4 2
F P F P F,P. PLE P P
r__z2 r__z 0 0 rp 2 _tFP "2, 1
4 4 4 4 ita 2 a2t
(3.2)
where
F=§5(0,r0,0)
P,=¢(0r,nT) n=1,2 (3.3)
and
Q=2 [, e cos(R)p(0.r 1) dt
Q,=2 [ e sin(2Qt)p(0.rt) it (3.4)

IV. Highly Polar Solvents
In solvents with a large dielectric constanbne can neglect

the Coulombic interactions between the counterions, setting the

Gladkikh and Burshtein

Onsager radiug; = 0. For this particular casé(o,ro,s) is known
to be

exp{ —(ro — 0)v/sD}

~ 1
P01 = (4.1)
0 At oD 1+ ovs/D
so that the expressions in eq 3.3 become
_ 1
F= 47t oD
(1-1d/0),, /(nzd/T1)
p=20€ ¥ — =12 (4.2)

foko(L+ JrogTy

wherekp = 470D is the diffusional rate constant, whitg =
0?ID is the so-called encounter time.

Taking the integrals in eq 3.4, one finds that the results can
be expressed via(o,ro,9) given in eq 4.1. Using the latter, we
obtain for highly polar solvents

Q =
2106(17r°/0)aR (1 + ag)cosfoy(rg/o — 1)] — o sinfoy(ry/o — 1)]
Koro 1+ o)’ +a?

(4.3a)

Q =
;Ue(l—ro/a)aa (1 + ag)sinfoy(ry/o — 1)] + a, cosfoy(ryfo — 1)]

r 2 2
Koo (1+ ap)’+ o (4.3b)
where
T
O = \/;ZW/QZTZZ—F 1+1
T
o = \/%«/./QZT;Jr 1-1 (4.9)

are the most important parameters responsible for the spin
conversion due to transversal relaxatiormgl And field-induced
coherent transitions with a frequen€&y.

In the limit of the low field, Q2T,?2 < 1, the expressions in
eq 4.4 reduce to the following

AtQ—0

274
oRg— T2=y o, —0

Most of the experimental works studying electron-transfer
reactions by optical and electrochemical methods are performed
in the natural magnetic field of the Earth which is rather low.
This is why this particular case is of exceptional importance.

(4.5)

V. Recombination only through the Singlet Channel

To illustrate the general theory, let us start from the simplest
example of the triplet RIP irreversibly created by electron
transfer from a triplet precurs8r! Such a triplet RIP has to
recombine through the singlet channel to the ground state
because recombination from this triplet state is prohibitéd,
=0, that is

2=0, Z=2 (5.1)
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Cumbersome but straightforward calculations show that the
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A. Recombination of a Contact Born Pair. At contact start,

result depends on what spin level of a pair was initially ro = o and therefore it follows from eqs 4.3 and 4.2 that

populated. If this is S, d; or T4, then

s __Z

Ps

" D+%Z
T
W _ 5
° D+ Tz
T _
P =5 Ty Tz (5.2)

where the corresponding recombination efficiencies are

kf((4 + qul)(l: +P,+ Q)+ kngQz)

16+ k(4 + kgay)(f — F + p, — P, + 0, — Q) + 4q, + k3oy(d, — Q)
(5.3)

Toz,
5 =

k(4 + K (F + P, — Q) — kXa,Q,)
16+ k(4 + kgay)(f — F + p, — P+ gy + Q) + 4q, + k(0 + Q)

(5.4
T,
> K + Ka)(F ~ Py 65
(4 + k)@ + K = F + py + Py + q) + (Kap)?
where
p, = P,(r, = 0)
g =Q(rp=0)

f=F(ro=0) = 1k,

are the contact values of the correspondingdependent
guantities. For the particular case of contact stayt o), all

these results are identical to those obtained earlier by Mints

and Pukho3

However, the most reasonable situation, presumed in the
majority of earlier works, is the start from the equilibrated triplet
state (T-pair) whose sublevels, T+, T, are equally populated

with the weights ¥/3,4/3,43).

Summing the above efficiencies with these weights, we obtain

for this case

1 2 'Z,
gDs:éTo(ps—i_:_))Ti(ps: D+TZS

(5.6)

where

'z
==
Kl + ko) (3F — P, — Q) — ki,Q)]

48+ K3I(4 + kSay)(3f — 3F + 3p, + P, + 3q; + Q) + 120, + k(30 + Q)]
5.7)

is the efficiency of a singlet recombination from the initially

equilibrated triplet indicated as T.

0 2 1+ag (5.8a)
== ———=q( .8a
' kD(1+(1R)2+0.|2 '
2 kD(1+(1R)2+(1|2 2 '
_ 1 _
P2 = m =P, (58C)
while ar andq, are defined in eq 4.4 and
214
= T (5.9)
1

1. Recombination of the S-PairUsing the results in eq 5.3,
we obtain from there the recombination efficiency of the contact
born radical pair initially created in the singlet state (S-pair)

Z,_ K
D 16+ 43,

4+ 150 2+ B )
. 1(1+ﬁ+koql)+k§q2] (5.10)

Such a complex result expressed gjéor,o) from eq 5.8 is
identical to that found by Mints and Pukhé¥Fortunately, it

can be represented in a much more simple and transparent form
found in ref 20

st_ K ot 2 B
3—%[ —~ (5.11)

at+1l 2(8+1)

where

o,

a=ogt ——o—
1+ g + K2k,

(5.12)

is the only conversion-dependent parameter.

2. Recombination of the T-Pair. The same simplification
is presented here for the efficiency of the singlet recombination
from the equilibrated triplet state

s
2D = % 2o+ (1 + 30)

(5.13)

2131+ + o)+ B+ 28+ a)—

Ko,

In the limits of kinetic and diffusional recombination, it takes
the alternative forms

ks @ p ke

at— < 1 kinetic

o 2|30+ 6@+pB) Tk
Z/D = 0
200+ B(1 + 3) L kinet
4(3+ Zﬁ + (l) atk—D > Inetic

(5.14)

It must be noted that the general relationship betw&en
andgs reported in section 3.2.1 of ref 7 holds true. The product
yields of the S-pair and T-pair recombination relate to each other
as follows

Sp.=A—-301—-1)"¢p, wherel=—"—

+i
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(A)

+1

0

T1

Singlet

1

Triplet

(B)

Singlet
Triplet

Figure 1. Scheme of spin transitions in the radical pair induced by
transversal and longitudinal relaxation as well as kygamechanism

of incoherent spin conversion (A) and the elementary spin model of
the same at equal relaxation times (B).

It is the straightforward consequence of the detailed balance
principle and can be easily verified here usfigg from eq 5.2
andTgs from eq 5.6.

VI. Incoherent Spin-Conversion

In a rather low field (alQT, < 1)

QZTZZ)
4

Obviously that in such a case the conversion proceeds with the
rate Q?T, which is a parameter of the incoherent process. Using
the results of eq 6.1 in the formulas in eq 5.12, we obtain the
value ofa for the incoherent spin conversion

L.

1
2

214

2y

T,

O ~ o~ QYT T2 (6.1)

Q7T,
4

214

T,

o=

Q%r,T
42 (6.2)
1+ < Nz (1 + QZTZZ)
2k, 4

This parameter depends on recombination only through the ratio
kf/ZkD, that is, small in the kinetic limit and large in the
diffusional one. Correspondingly, we obtain in these limits

242 S
%(1+3QT2) atkc_1<< Ta
T 4 %o T (6.3)
* 2 QT2 IS T '
E(l + _2) at—>1, d
T, 4 2k,

Gladkikh and Burshtein

following from eq 2.1

p=4p
However, under the condition of incoherent conversiQ,
< 1, the latter can be conventionally reduced to a set of four
master equations for only diagonal elements of the density
matrix, that is, populations of a singlet levgg = ps, and three
sublevels of the triplet state,-, po, andp+ (see Figure 1Ap-20

(6.5)

ps=
1 1 1 Pt p
+——— — (kg +=— == ps+ —— (6.6a)
ko T, 2T1) (ko T, 2T1) ST oom,
po=
11 1 P+t P
ot - 2o (lor 2+ &)+ 20 o
Pt Py
=1, T T,
and
_ P+t P p-
-= 7o, T, (6.6¢c)
Here
ko = Q°T, (6.7)

is the rate of incoherent spin conversion in a stable radical pair
proceeding via a\g mechanism.

1. Two-Level Model. For the extreme cask = « (5 = 0),
only two levels out of four are involved in the spin conversion
and the set (eq 6.6) is reduced to the following

ps = ko~ pg) (6.8a)
o = kips — po) (6.8b)
while p+(t) = p+(0), p-(t) = p-(0) and
—k 4L
=kt 69)

The single-channel contact recombination assisted by the
incoherent spin conversion in the two-level system was the
subject of a separate exhaustive investigation in ref 20.

The comparison of the incoherent and coherent spin conver-

These are exactly the same results that were found in appendixsion assisting a single-channel contact recombination in a two-

B of ref 20.
In the case of a low field

(6.4)

depends on a single variable parameter, encounter diffusion,
changing with viscosity.
A. Rate Models. In a number of our and other works, the

level system was continued in ref 21. It was confined only to
the RIP starting from contact{ = o) when all the results are
much simpler. If, in additiong = 0, then the recombination
efficiencies in eqs 5.11 and 5.13 gain the following form

o

'z.= (6.10)
31+o)+ @3+ ()L)ZBS

spin conversion was presumed to be incoherent and was
considered from the beginning as a stochastic process occurringHere, zs = k§/4no is the usual constant of the conventional

with some rateko.91222-25 |n general, when the nonreacting
radical pair is immobile, its density matrix obeys the equation

(spinless) “exponential model2:6 Exactly the same result has
been obtained in ref 20 solving the rate equations for the two-
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level problem, eq 6.8, except that P o1 z/2 2 % _ TZI 619
= “T3D+z2"3D+z p+z
o= z?d 1+ Q%) (6.11)
2 where

does not depend drf at all, unlike its coherent analogue 6.2. AtD—0

Moreover,a from eq 6.11 does not coincide with either of the 2

expressions in eq 6.3. 1, 24D+ 37 _’§Zt

This is because the rate eqs 6.6 were obtained from their 6D + 4z 4

coherent analogue, eq 6.5, when the motion of radicals was

switched off, together with the boundary conditions accounting This is the very same limit fofZ; as in the casd; = T

for the recombination. When the motion of radicals is accounted considered below and represented by solid lines in Figure 2.
for afterward, their recombination is affected by the spin 2. Equal Spin Relaxation Timeslf Ty is finite, then all four
conversion but the recombination itself no longer affects the states in eq 6.6 are involved in the reaction but the result (eq
spin conversion. This is a main weakness of rate theories first 5.11) first obtained for the incoherent spin conversion in ref 18
reducing the coherent spin conversion to incoherent and only holds true provided that the parameteris given by the
then accounting for the encounter diffusion and recombination expression 6.11. For the particular case of equal times

of radicals. Here, in section Ill, we did quite the opposite: we

first solved the problem by simultaneously taking into account o=y /(A +KkT) (6.14)

the relative motion and conversion and only then turned to the

particular case (eq 6.1) where the latter is incoherent. Therefore,whereT = T; = T

our o for coherent spin conversion is given by eq 5.12 and for

the incoherent limit by eq 6.2, but the rate estimate (eq 6.11) y=4/20JT= VXID
does not follow from either of thei?.
However, there is an exceptional case of zero fi€d= 0) and
when the transfer is carried out by only spin relaxation. This
stochastic process, incoherent by its nature, is executed with x=20°IT (6.15)

the rateks = 1/T,. Hence, the results (eq 6.10) with= y are
exact for the zero field.
According to eq 6.4y increases with viscosity. On the other

In this case, it follows from eq 5.11 that

hand, the rati§Zy4zs monotonically decreases with ()2 from Sis _ E yy1ltkT+2 Y (6.16)
1 to ¥, (upper dashed line in Figure 2(A) At fast diffusion, the D 2k 1+ kT +1 20y + 1) '
spin conversion does not have time to affect the recombination

and SZJz; = 1. On the contrary, for small values @f, the Similarly, from eq 5.13, one gets

equipartition between S andTis completed during the
encounter time, reducing the recombination efficiency by one- TzS k?

half. D % X
As for TZ,, it is zero at fast and slow diffusion passing through
a maximum between (lower dashed line in Figure 2A). At fast Y[+ (24 3y)/1+ KkyT]

diffusion, it is zero because no transition fromtd the reacting

S
S state occurs before separation of the radicals. On the contrary, 31+ N1+ v /1I+ kD +(3+2y+v./1+KT E
at slow diffusion, the encounter time is long enough for transfer () 4 kD) +( vy koT) Ko

to be completed (6.17)
Tzs 1 «a 1 When the magnetic field is zerdy(= Q = 0), we obtain
Dlose 23%4a 2 ata>1 from egs 6.16 and 6.17
so that sZS:Esz+4
T 4y+1
fim Tp. = — =2 _1 (6.12) 2
-0 ** 1+7z/p 3 ' "z=7 —r (6.18)
After T is completely exhausted, the share of triplets that have I+y+ E

reacted is only/; of the initial triplet population. The remaining
23 that were in the other triplet states,,Twere not involved in At very fast diffusion wheny = ¢%D — 0, the spin conversion
the reaction. has no time to occur ang = 0. In this limit, SZs reaches its

A similar picture develops when the system recombines only maximal value, z;, which is the efficiency of the singlet
through the triplet channel except ti¥atandZ are interchanged  recombination in the absence of the spin conversion. As soon
(dashed lines in Figure 2B). The former passes through aas the spin conversion is switched 0iZs falls down with
maximum, while the latter monotonically decreases to another decreasing diffusion and reaches the minimal vali#eatD =
value, %, which needs a special explanation. In fact, the 0. In this limit, all spin states are equally populated and the
efficiency of recombination from glreduces by one-half when  share of the singlet one 4.
D — 0 while that from T. remainsz = kI/4:w at anyD value. Although the diffusional dependence of the singlet recom-
Therefore, eq 5.6 at slo® takes the following form bination from the equilibrated triplet state (the lower solid line
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(A) 1.00-

| Singlet channel only |

0.754

0.50 1

Zlz

0.25 4

(B)

0.75 1

0.50 1

Zlz

0.25

0.00 T T T T T
0.00 0.05

1/D

Figure 2. Zero field recombination efficiencies for a single-channel
recombination through either singlet (A) or triplet (B) channelsad

z were taken equak = 2.63 x 10~ cn¥/s). Dashed and solid lines
relate to the case$; = « and T, = T, = 15 ps, respectively. The
upper curves in (A) and (B) are for the efficiencies of allowed
recombination from initially populated states, while the lower ones are
for the recombination initially forbidden but switched on by spin
conversion to the reacting state. The contact distanee ¥s 10 A
everywhere.

in Figure 2A) is qualitatively the same as for the two-level
model, the result appearing in the slow diffusion limit is different

%
||3|Lno ZS_4
so that
. zJ4D
T = —m—_—- T
M #s=1% zjap (6.19)

In contrast to eq 6.12, in this case, the whole triplet is completely

Gladkikh and Burshtein

with a microscopically defined spin conversion rate

2
1,97

o+ (6.21)

k =

As seen from Figure 1B, the conversion rate kg Br the
transition from singlet to triplet, while from any triplet substate
as well as from all of them this is onlg. Due to the spin
conversion, the population of the singlet and triplet &t kst
relate to each other d#:%,, whatever was the initial state.

The elementary spin model (ESM) used in ref 17 enables us
to calculate the efficiency of singlet-channel recombination from
the singlet

S La+4

do+1 (6.22)

Being very similar to the double-level expression 2t in eq
6.10, it is distinguished by

214
T

292T2)

2

o= /dkgy=
The latter differs noticeably from eq 6.11 in the weightCd.

Although in this respect the values from eqs 6.2 and 6.3 are
also different atQ = 0 all of them turn toy.

(6.23)

VII. Double-Channel Recombination after Contact Start

Let us now turn to the most general case when recombination
is possible from either the singlet or triplet state of the pair.
The triplet products are excited triplet molecules whose yield
can be detected spectroscopically immediately after geminate
recombination. Both triplet and singlet yields depend on the
initial state of the pair given byo. Using the corresponding
in eq 2.9 as well as the genef@lfrom eq 2.13 and, from eq
3.2, with parameters from eq 5.8, we calculated from egs 2.10
and 2.11 the yieldg (o) and ¢(0). Only from them can one
obtain the recombination efficiencies defined in eq 2.%75;

Z;, andZ = Zs + Z;, which are discussed below.

A. Start from the Singlet State. If initially only the singlet
state is populated, then the efficiency of recombination through
the singlet channel is

_K

=5

o+ 2(1+ k)
o+ 1+ ki/k,

p . I(?.l)
28 + 1+ K/ky)

SZ/D

exhausted due to the longitudinal relaxation between its @nd that for the triplet channel is

sublevels (see Figure 1A) which is as fast as the transversal

one.
B. Elementary Spin Model (ESM). The simplest, but most

widely used and rather successful, rate model follows from the
set (eq 6.6) phenomenologically reduced to only two equations

at T, = T, = T. These equations relate to each other the
population of the singleins = ps, and the total population of
the triplet, mr = po + p+ + p-. How these equations were

ke
2

o 4 B
1+oa+kiky 2(1+8+klik)

Z/D

] (7.2)

At kI = 0, eq 7.1 reduces to eq 5.11 fé#s = SZ, while Sz
becomes zero as in eq 5.1.
B. Start from the Individual Sublevels of the Triplet State.

obtained one can see in section VIIIA of ref 12. For the case of If initially one populates only thdj state, then the results are

equal relaxation times, we have
M = —3kms + kymy (6.20a)
My = 3kmg — kymy (6.20b)

different

ke
Toz ID =
2k(1 + o+ K/ky)

Ia

.
Blta+ kilkD)] -
2(1+ B + K/ko)
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ke kS
To — -
/D ERTEPREEETR a+21+ il +
.
AL+ a+ k;/kD)] a4
2(1+ B+ k./kp)

Equation 7.3 is the contact analogue of eq 5.4 for the double-
channel reaction, but it is greatly simplified in the same way as
eq 5.11 when compared to eq 5.10.

Subject to similar simplification and generalization, eq 5.5
takes the form

T ZJD —
kK B+ o+ Kl/kp)
25 201+ B)(A + o) + 2kKI ko2 + (24 B+ o) (kS + KDk

(7.5)

and its triplet analogue, which is not zero anymore (sk{ee
0), is equal to

.
T=7/D = %D 2—
B+ o+ kl/ks)
201+ B)A + ) + 23k ko2 + (2 + B+ a) (kS + kl)/kg

(7.6)

The definition of the spin conversion parameferemains the
same as in eq 5.8c, while for eq 5.12should be substituted
for the more general one

of
Tt + (K +k
r T (K 1 k)2

(7.7)

a = og

valid for the double-channel recombinatidd:(: 0).

C. Start from the Equipopulated Triplet States. Having
all the efficiencies, one can calculate any yield including the
total yield of recombination from the equipopulated triplet states,
through either the singlet or triplet channels. Analogous to eq
5.6 we have

1 2 'Z
T _dT [
$s=3 YTz W= T
T
T _11, 21, _ z
Pt 3 T3 Nt ooy (7.8)
where
=1- T _T —__ Y
@ s Pt D+TZ
and
2="2.+"2, (7.9)

Using, in these formulas, the above obtained results, we get
for the efficiencies of the singlet and triplet channels in the case

under consideration
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2D =£ X
201 + kl/kp) + (L + 3o + k/kp)
ST T S T
2(3(1+ﬁ)(1+a)+3%+a%+[3k—k§+(3+ﬁ+a)kc:0kc
(7.10)
TZJDZ%X
. 201 + Kl/kp) + AL + 3o + kifko)
2(3(1+ﬁ)(1+a)+3%+a%+ﬁk£+(3+ﬂ+a)k§+ch
(7.11)

D. General Presentation of the Main ResultsLater on we
will consider only the efficiencies of recombination from either
the singlet or equilibrated triplet staté&Z and TZ. They both
can be represented uniformly in a very compact form

Z,=27(1-°M) =2z (7.12a)
'Z=z'T1 "z=2z(1-") (7.12b)
where
a2 Bl
“Qrozp) T @i prgp (139
=

(1 + z/D)a/2 + (1 + 30+ z/D)B/4
3(1+ a)(1+ B) + (az +32z/D + Bz)/ID + (3 + o + f)(z + z)/D
(7.13b)

E. Double-Channel Recombination in ESMIf the start was
made from the singlet, then the efficiencies of the different
channels in the ESM are the same as in the exact theory, eq
7.12a, but

3o

Sy1 —
41+ o+ z/D)

(7.14)

wherea is given in eq 6.23. Atz = 0, the double-channel
expression in eq 7.14 substituted to eq 7.12a red®ite® its
previously obtained single-channel analogue 6722.

The start made from the equilibrated triplet, treated the same
way, leads to another formula, an alternative to eq 7.13b

(08

Ty —
H_4(1+(1+ZS/D)

(7.15)

It is remarkable that the efficiencies at which the recombination
is switched on by the spin conversioiz; and "Zs, depend on
a single recombination parameteror z, respectively, while
two other efficiencies depend on both of them.

1. Recombination in a Zero Magnetic Field.In the case of
a zero field whero. = v, the results following from egs 7.12
after substituting the expressions from eqs 7.14 and 7.15
coincide with those that can be deduced from the exact eqs 7.1,
and 7.2 and 7.10 and 7.11, respectively, provided

a=pf=y=+xD

that is, T1 = To> = T in addition toQ = 0. This is because

(7.16)
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A) Singlet Start S7.=72 3vx/D
1.00 4(1+ /XID + z/D)
S
Z
075 D (2 F— o] (7.18b)
K / 4(1+ /XID + z/D)
-~ ] F
N 0.50 E g All of them pass through an extremum at a common point
N T I
| Ic S z=D
0.25
- Sz‘ that is at
0.000 7 0.025 0.050 0.075 0.100 ke =ko
11D The vertical line at this point in Figure 3 separates the kinetic
(B) Triplet Start control, D > z, from the regime of diffusion controD < z
1.00 (left and right branches of the curves).
- 2. Kinetic/Diffisional Reactions of Radicals Started from
b Z, Contact. Far to the right, at the slowest diffusion, we obtain
0.754 I from eqgs 7.18
F
4 l F
N
n 0504 & s At%>>7>>1
N | 'O
1 ¢ N — 5 § — 5 _
025 ] A Z.=1z 27D =1 Z,
:
\ZS and
0.00 . T - . : . 1
0.000 Zm/ 0.025 0.050 0.075 0.100 2=2- 2 yD=2z-"2Z (7.19)
1/D

Figure 3. Diffusional dependence of the efficiencies of the zero field These formulae indicate that the rate constants™; = 34k

gg;‘;'g;\‘;g%’;rﬁﬂ: i%%?ﬁénéﬂél at zgog:)?ﬁtczgérsaigi :f‘rligiae'né‘;a‘:tion and 410"Zs = Y4ykp are proportional to the diffusional constant
= 20T = 5 x 107 crrels whereT = T, = T, = 15 ps. (A) The start <Ko= 470D, multiplied by the spin conversion factor =
from the singlet state of contact radical pair. (B) The start from the VX/D. Therefore, they are proportional t®X'% When the

equipopulated triplet states of the pair. radical pair starts from the singlet, the recombination constant

is three times larger than in the case of the triplet start.
under these conditions the set of egs 6.6 rigorously reduces to This is a very interesting peculiarity of a spin-selective theory
the ESM eqs 6.20 witls = 1/2T. compared to a spinless one. The latter may be diffusional only
Figure 3 shows the viscosity dependence of all the recom- in the case of a noncontact st&#€ while the former is

bination efficiencies at the contact start under condition 7.16. subdivided into kinetic and diffusional regimes, even if the
Unlike Figure 2, where they have been shown for the opposite radicals start to move being in contact. Immediately after the
cases of either the singlet channkf 0= kg) or triplet start they become separated; the reaction is switched off and
channel @ =0= kz) recombination, here we are dealing with  the spin conversion is on. The recombination is now limited by
an intermediate case of “spin-independent recombination” first diffusion of radicals from where they find themselves to the
considered in ref 26. This is an exceptional case when the contact.

reactions from the singlet and triplet proceed with equal rates: Its rate constant is diffusional when diffusion is slow and
kX = k! (z = z = 2). Under such conditions, the spin the reaction is accomplished at the very first recontact but the

conversion does not modulate the recombination and cannotSinglet and triplet products appear with the weights of these

affect its total efficiency states in the radical pair after spin conversion is accomplished:
1/4 and3/4.
Atz=z=z Under kinetic control, the results are different
Z:ZS+ZT:Z (717) At%<<1+’y
However,Zs andZy change with diffusion as shown in Figure 4+
3. Under conditions 7.16 and 7.17, they obey the simple 52, = # z
formulas 1+
S7 — _yz =37
SZSZZl— 3vx/D Z, 4(1+y) Z
4(1+ v/x/D + z/D) TZt _4+3y . (7.20)
T V' XID 4(1 + )/)
Z,=z (7.18a)

4(1+ v/x/D + z/D) However, ad — », the spin conversion rage— 0 andSZs =
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TZ, = zwhile SZ; = TZ; = 0. The same result follows from eq = Q2T,?
7.19 for the opposite diffusional limi) — 0 (y — o).

This means thatZs and 7z, vary with diffusion fromzto z QZTZ2 2y
while SZ; and™Zs change from 0 to 0, but between the deviations a~yll+ 3 (l + 1+y+ Z,JZD) (8.5)
from thez and 0, horizontal lines are three times larger for the
singlet start (A) than for triplet (B). The maximal values of these Under this condition, the MFE is linear i22T,2
deviations reached at= D are
«/_ T Qszz 2y
maxSz,=z— 2. =32 (7214 M~ —® g (1+ 1+y+zJZD) (8.6)
4 2+ Jxiz
where
1. Vxiz

max'Zy=z- "2 =gz = (1210) g (D) (41 + B + 2D

The efficiency of recombination from the singlet state through { [3(1 +y)(1+p)+ ZBS B+28+ }/)] [2(1 +y)(1+p)+
the triplet channel is three times larger than the vice versa.

As for the spin conversion, it is either weak or strong % (2 + 55 +y@1+ ﬁ/2))]}
depending on whether = 20%/T is less or greater than If x D 2
= 1/T = 0 is zero, then the expressions in eq 7.21 also turn to

zero and recombination proceeds only from the initial states: The solution of the rate eqs 6.6 leads to a different result

SZs=TZ, = z In the opposite case (~ »), these expressions 0Q2T.2
reach their maximal values which atkz for the singlet start TMS ~—® 2 (8.7)
(A) and Y,z for the triplet one (B). 2
VIIl. Magnetic Field Effect becausenx has to be taken from eq 6.11
In the present theory, the frequency of spin conversion (eq 74 o s QZTZ2
1.2) is proportional to the magnetic fiel. Affecting conver- 0=, /72A+ QLT y|1+— (8.8)
2

sion, the magnetic field changes the free ion quantum yield,

averaged over the distribution of initial separatioffs), As can be seen at slow conversidMs is always linear in

1 Q2T,2, but the slope of this linearity in the exact formula (eq

@(H) = [ o H)(r) dr = (8.1) 8.6) varies front/g aty < 1 up to%g aty > 1, z/2D, while in

1+2(H)D the analogous rate relationship, eq 8.7, it is always lafger,
The quantitative measure of the magnetic field effect (MFE) is Therefore, the paraboli€2 dependence of MFE at slow
conventionally defined as conversion is much sharper in the approximate rate theory than
in the exact one.
@(H) — @(0) Z(0) — Z(H) This conclusion is also valid for the ESM, whéFeis equal
M= #(0) = D + Z(H) (8.2) to T, anda is given by eq 6.23. The MFE estimated with ESM

obeys exactly the same quadratic dependence (eq 8.7) provided
As far as we know, until now, it has been studied experimentally one setsy = 5 in ®(y,f)
only with systems subjected to a single-channel recombination.
In particular, this was done in a wide range of fields with the Py = Pl,—5 =

reaction of photoexcited Ru-trishipyridine with methyl viologen z y(1+ y)(1+ z/D)

as an electron accept®t?® This reaction starts from the D Z Z 5
equilibrated triplet state of a pair that can recombine only 3[1 +y+ _] [2(1+ V)z + = (2 +y+ yz/z)]
through a singlet channel after the field-dependent spin conver- D D 2

sion.

However, the region wheréMs is quadratic inQ holds in such
a narrow strip (see Figure 4) that all the experimental points
are usually obtained out of it.

High Magnetic Fields. In high magnetic fields, the MFE
decreases with retardation approaching the constant negative

A. Singlet Recombination from the Triplet. In this par-
ticular caseZ = "Zs. It depends on the starting poingif f(r)
= O(r — ro)/4zr2. The partial recombination efficiency

T
2(H) = 2@ 83 Lale
is given by expression 5.7, which is too complex for analytic At Q — 0
investigations.
1. Contact Start. The situation becomes much simpler if we T|\/|s ~-T+ A (8.9)
first focus our attention on the pair starting from contact when QT,
Z(H) = "2(Q,0) (8.4)  where
where the latter is given by expression 5.13 vithndo defined = )
in egs 5.9 and 5.12, respectively. 2z(z,+ D)(1 + )
Low Fields. When the magnetic field is so small tH@PT,? [4@1+B)D+z2+ABA+ AL+ y)D +z(3+ 28+ y)]

<1, then using the approximate expressions (eq 6.1) in eq 5.12,
we obtain in the lowest order approximation with respect to andA is also some function af, 5, andy. It is useful to know
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Figure 4. Field dependence of the MFE at contact start in the exact Figure 5. Diffusional dependence of the MFE @i = « and start
theory (solid line) and in the elementary spin model (dastosdted from Ty (dashed line), fofl; = T, = 15 ps, and the same start;Tat
parabolic line). The vertical line separates the low field (incoherent) equal times but starting from the equilibrated triplet (T). The contact
Q2 dependence from the high field MFE, originating from the coherent (ate constankf = 3.31 x 10° A3¥ns, QT, = 0.75.

spin conversion. The latter is well interpolated by the empirical formula

8.10 withé = 0.91,¢ = 3, and® = 1.8 shown as the dashed curve 0.00 -
approaching the exact result from above. The highest field asymptotic

behavior (eq 8.9) and its limit; ", are shown by the dotted lines below.

The rates of contact recombinatian, and other parameters are the -0.05 +
same as in the previous figure while= 1076 cn¥/s.

T which is actually an upper limit of the absolute value of -0.10+
MFE: 0 < |TM4 < T. However, the asymptotic dependence
(eq 8.9) shown by the dotted line in Figure 4 is not achievable =
because it holds at too high a magnetic fiefeTg > 1000),
while the experimentally studied interval is arou@d; ~ 5.

Moderate Magnetic Fields.Within this intermediate interval, -0.20 4
the descending branch of the solid curve should be better
interpolated with the following formula 025

_ 6
QT,+¢

»

-0.15 1

0.0 0.5 1.0 15 2.0 2.5 3.0 3.5
(8.10) oT

Figure 6. Field dependence of the single-channel MFE at different

With a proper choice of, &, and®, this interpolation is as starting distances. The rest of the parameters are the same as in Figure
good as that shown in Figure 4 by the dashed line. This is the 4.
actual observed magnetic field dependefiéd;!® while the _ _ ) _
alternative (incoherent) parabolic dependence (eq 8.6) is hardly'VNen the initial particle separatiog — o is comparable or less
detectable and is described by ESM only qualitatively. than the tunneling length. However, it is instructive to recognize

In Figure 5, the nonmonotonic diffusional dependence of the the general t.end'ency of the MFE to chan.ge wih .
MFE |s used to Compare a feW d|fferent approaches to the As ShOWI’l n F|gure 6, the MFE m0n0t0n|ca”y deCreaseS W|th
problem. It was exhaustively studied in the frame of “a two- 'o at anyQ and the sharper the larger it is.
state (S,§)” model in ref 10, presuming that the system starts ~ However, the space-dependent recombinationWtgis not
from To having8 = 1/T; = 0. The solution to such a problem  actually the contact one, as in eq 2.7. Usually it is not narrower
at contact recombination and contact start can also be obtainedhan the tunneling length ~ 1 A, that is, at so close starts, the
from our theory (dashed line in Figure 5). Nothing changes recombination is for sure not contact. If nevertheless the contact
significantly if we take into account all four spin states, setting approximation (eq 2.7) is used, then the diffusional dependence
T. = T2 (lower solid line in Figure 5). But if the start under of the MFE at the contact start is questionable at slow diffusion
these conditions is taken from the equilibrated triplet state (upper (the lowest curve in Figure 7 & < 10°°). However, the curves
solid line in Figure 5), then the difference is much more forlarge separation are free of this weakness in the fast diffusion
pronounced. This means that the two-level model is too rough region, where the effect is the most pronounced (Figure 7).
for fitting the real experimental data and even more so its  Very similar curves with clearly expressed minima were
incoherent analogue 6.8. On the other hand, it should be notedobtained experimentally by Steiner et?&lThey were fitted in
that the results are rather insensitive to the particular value of ref 10 within the two-level model with an exponential (non-
T, in the whole intervab > T; > T, if the starting state isthe  contact) recombination rate. The calculations include the
same. averaging (eq 8.1) over the realistic distributigry) which is

2. Noncontact Start. It should be stressed that the results different for any D values. Unfortunately, all diffusional
are very sensitive to the starting point especially if it is close to dependencies were studied by the Steiner group variing
the contact. This peculiarity has been mentioned already in refsvalues (viscosity) by changing the solvent composition. This is
4—6 and 17 where it was shown to result from the contact accompanied by a significant variation of the static and optical
description of the recombination. In this approximation, the dielectric constants changing the outer sphere reorganization
region of too low diffusion is not properly covered especially energy4, parallel to diffusion. It was shown later that such a

"My~ —€T +

2
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Figure 7. Diffusional dependence of the single-channel MFE at
different starting pointso. All the parameters are the same as in Figure
4..

TABLE 1
D, créls Tz, pS ro, A
6.67x 1077 47.6 11.2
1.16x 10°© 40.8 10.8
2.30x 1076 37 10.6

variation ofZ affects significantly the space-dependent transfer

rate and changes qualitatively the interpretation of the quantum ’

yield diffusional dependende?® This is not the place to go into
the details of fitting the real diffusional dependencies. Instead,
it is better to concentrate on fitting the field dependence of the
MFE when nothing is changed exce@t

3. Fitting the Field Dependence of the MFEThe expected
field dependence is exhibited in Figure 6. The different starting
distancesry, represent the difference in diffusion. The faster
the latter is the closer to the contact the actual initial distribution,
f(ro), is. Instead of the whole distributiof{ro), we take a single
ro, close to its average value, which shifts to contact when
diffusion becomes faster. However, not only the starting distance
changes withD but also T, is subjected to some changes
indicated in the original experimental work (Table 1 in ref 28).
We used these values to fit the related curlfiégls usingro as
a single variable parameter and borrowing the valuekfm:
3.31 x 10° A%ns from ref 10 (see the caption to Figure 7
therein).

The results of our fitting are shown in Figure 8 and Table 1.

They cannot be expected to be better because the contact ' T T

approximation for recombination (eq 2.7) is employed instead
of the trueW(r) and the single starting distance is used instead
of f(ro).

The monotonic decreasing of with D confirms the nature
of the forward electron transfer (ionization) that should be
diffusional at such a smab value. The effective radius of the
diffusional ionization is known to go down when the diffusion
accelerated?8 Of course, the variation df simultaneously with
diffusion can imitate the same effect as it did already in another
respect—® Nonetheless, the spin conversion responsible for the
really observable MFE is an undoubtedly coherent process
contrary to what was expected in previous wotk®

B. Double-Channel Recombination.When both reaction
channels are switched on, the yield of free radicals (eq 8.1) is
also field dependent, thougt(H) = Zs + Z; depends on both
k% andk!. Until now, there was only one system whetand
Z; were measured simultaneouslHowever, the MFE was not
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Figure 8. Fitting of the field dependence of MFE at various values of
the diffusion coefficient, increasing from top to bottom (Table 1). The
points are taken from experimental wafk.

=

=
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107

Figure 9. Diffusional dependence of the MFE for triplet (A) and singlet
(B) radical pairs, starting from contact. Single-channel recombination
is given by solid lines, double-channel recombination by dashed lines,

and the spin-independent border case by a dotted one. The relative

efficiencies of the singlet and triplet recombination channels are pointed
out by the relative andk! values.

Therefore, we restrict our attention to only the contact start
using ¢(o,H) in eq 8.2 instead ofp(H). This is only a
demonstration of the qualitatively different diffusional depen-
dence of the MFE, which is very sensitive to the interrelationship
betweenk andk! at any starting state (Figure 9).

For triplet recombination through the singlet chanridls,
we have in (A) the lowest curvekz(: 0) which is the same as
in Figures 7 and 5. An alternative recombination of the same

detected there. Besides, the spin conversion there was carriegbair, via the triplet channel onlyM;, takes place alf =0and

out by another (HFI) mechanism that was considered sepafately.

has an opposite, positive sign of the MFE. A border case of the
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double channel but “spin-independent recombinatidd” € 5. }((2_) B_urThItEeirg JA(I:h Zhalrjil;]O\;‘,lgAé Aé;ssggll(girev, N. V.; Spirina, O.
kcs) is a horizontal dotted linéM = 0. At comparable but not - Krissinel, E. B.J. Chem. Phys1991, 95, :

equal rate constant§ = 10k] andk! = 10k, the signs of the 25
effect are also the opposite as for the single-channel limits. (4) Neufeld, A. A.; Burshtein, A. I.; Angulo, G.;. Grampp,J5Chem.
For recombination from the singlet initial state (B), the picture Phys.2002 116 2472.

is qualitatively the same, except that the signs of the MFE when EZ; gurs:ttel_n, AA '-I?ANdeUfg'g' A, APJh F;%%-f;‘;g‘-l ggol 105 12364.
the singlet or triplet channel dominates are interchanged. Since urshtein, A. 1.Adw. Lhem. =iy :

S . L (7) salikhov, K. M.; Molin, Yu. N.; Sagdeev, R. Z.; Buchachenko A.
the 'n_'t'al state of the photoinduced pair is usu_a”y kno_wn’ the L. Spin polarization and magnetic effects in radical reactiddslin, Yu.,
diffusional dependence of MFE allows one to find easily what N., Ed.; Elsiever: Amsterdam, The Netherlands, 1984.

channel is more efficient and by how much. (8) Lukzen, N. N.; Pedersen, J. B.; Burshtein, AJlPhys. Chem. A
2005 109 11914.

(9) Steiner, U. E.; Ulrich, ThChem. Re. 1989 89, 51.

(10) Krissinel, E. B.; Burshtein, A. I.; Lukzen, N. N.; Steiner, U. E.
The yields of singlet and triplet products of the double- Mol. Phys.1999 96, 1083.

channel recombination from either of these states and any initial _ (11) Burshtein, A. I.; Krissinel, E.; Steiner, U. Bhys. Chem. Chem.

separation of radicals are exactly calculated assuming the spinPhyS'2001 3, 198,

. . - (12) Burshtein, A. . Adv. Chem. Phys200Q 114, 419.
conversion is due to ag meghanlsm. The results for the (13) Mints, R. G.. Pukhov, A. AChem. Phys1984 87, 467.
recombmatlon through the singlet cha}nnel, only obtained (14) Purtov, P. A.: Doktorov, A. BChem. Phys1993 178 47.
previously for the contact start from the singlet, are reproduced  (15) korst, N. N.; Lazarev, A. VPhysical969 42, 31.
and extended for the start from the equipopulated triplet states. (16) Pedersen, J. B.: Freed, J. H.Chem. Physl973 58, 2746.
In the latter case, the MFE arising from the coherent spin  (17) Gladkikh, V. S.; Burshtein, A. I.; Angulo, G.; Grampp, Bhys.
conversion is estimated and well fitted to the available experi- Chem. Chem. Phy2003 5, 2581. _
mental data. The popular model considering the spin conversion ~ (18) Gladkikh, V. S.; Burshtein, A. IChem. Phys.n press.
as an incoherent rate process is not appropriate in a high fieIdZGéli)stanse”' M. J.; Neufeld, A. A.; Pedersen, JOBem. Phys200q
but becomes exact in a zero field, provided the spin relaxation ;) Burshtein, A. .Chem. Phys.in press.
times are equal. In this particular case, the diffusional depen-  (21) Burshtein, A. 1.Chem. Phys. LetR005 411, 66.
dence of all the yields coincides with the exact one and may be  (22) Tomkiewicz, M.; Cocivera, MChem. Phys. LettL971, 8, 595.
used for discrimination between the channels. (23) Bube, W.; Haberkorn, R.; Michel-Beyerle, M. E. Am. Chem.

The only limitation of the theory is the contact approximation S°¢.1978 100 5993. ,
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Variation of the Resonant Transfer Rate When Passing from Nonadiabatic to Adiabatic
Electron Transfer
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Two competing theories are used for bridging the gap between the nonadiabatic and the deeply adiabatic
electron transfer between symmetric parabolic wells. For the high friction limit, a simple analytic interpolation

is proposed as a reasonable alternative to them, well-fitted to the results of numerical simulations. It provides
a continuous description of the electron transfer rate in the whole range of variation of the nonadiabatic
coupling between the diabatic states. For lower friction, the original theories are used for the same goal. With
an increase in coupling, the cusped barrier transforms into the parabolic one. Correspondingly, the pre-exponent
of the Arrhenius transfer rate first increases with coupling, then levels off approaching the “dynamic solvent
effect” plateau but finally reduces reaching the limit of the adiabatic Kramers theory for the parabolic barrier.
These changes proceeding with a reduction in the particle separation affect significantly the spatial dependence
of the total transfer rate. When approaching the contact distance, the exact rate becomes smaller than in the
theory of dynamical solvent effects and much smaller than predicted by perturbation theory (golden rule),
conventionally used in photochemistry and electrochemistry.

The electron transfer rate is a fundamental property used in
the theories of intramolecular and intermolecular reactions in

E1 E,
dense medi&* At high temperatures, the system motion is |
adiabatic everywhere except at the crossing point of the 2v
intersecting energy levels where the electron tunneling occurs. !
For electron exchange reactions, the potential surface consists U

of the two symmetric diabatic energy levels, which are com-

monly assumed to be parabolic (Figure 1). The free energy gap ' ' 2'1 éz_ E,

for electron transfer in both directions is zero, and the transfer
rate is given by the conventional Arrhenius equation:

Figure 1. Energetic scheme of resonant electron transfer.

all of the results and their regions of applicability but does not
W=ke UV y=1/4 (1.1 provide bridging between them. Particularly, the variation of
the prefactork with the nonadiabatic coupliny at a fixed

Here,U is the energetic height of the crossing poiny, i2 the dissipation strength (in the vertical cross-section of the domain
nonadiabatic splitting of the energy levels 1 and 2 at this point, from bottom to top) is due to the monotonic increase of the
A is the reorganization energy of transfer, dad= 1. coupling,

The preexponential factok, depends on the nonadiabatic
coupling and the dynamic of motion along the reaction V(r) = Ve M (1.2)
coordinate. The evaluation of this factor constitutes a complex

problem that cannot be solved universally within a single theory. with reduction of the inter-reactant separation (up to their closest
A number of theories have to be used to cover the whole domainapproach at = o). Passing this way at high friction, one starts

of k(V,y) wherey is a friction along the reaction coordinate. from the nonadiabatic perturbation theory subregion, where
This two-dimensional domain was used in a few wérkso transfer is limited by tunneling, crosses the intermediate
indicate the results of different theories and their mutual borders subregion of the dynamical solvent effect (DSE), but finishes
as shown in Figure 2, taken from ref 7. This figure establishes in the adiabatic subregion where the reaction is controlled by

10.1021/jp044311y CCC: $30.25 © 2005 American Chemical Society
Published on Web 05/18/2005
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\Y space, which became known as the dynamical solvent effect,
; = , was reproduced in a number of publications and observed
T KRAMERS é%y%’ experimentally?® However, with an increase i, DSE gives
yYvy B way to the well-known Kramers result for the parabolic barrier.
L A T v y The latter is slightly different from DSE, which is actually its
@ analogue for the cusped barrier:
ENERGY HIGH FRICTION i
ACTIVATION kose = 1/t A/ 60T for the cusped barrier  (1.5a)

1 /2 .
Kram = A a2y for the parabolicone  (1.5b)

T @
2T . -
In the present work, we focus mainly on the large friction
PERTURBATION THEORY g (strong dissipation) region where the alternating formitas

kose, andk.am follow one another with increasing. There is

Figure 2. Entire domain of theoretical definitions of electron transfer 2SO the more general expression derived by Zusman bridging
pre-exponenk(V,y) given in ref 7. The vertical dashed line corresponds  between the first two:

to the valuel = 40T used further on. ) ]
_ kerkose  [kpr  weak nonadiabatic
diffusion to the crossing point. In each subregion, there are Knon = Koy + kose_

expressions fok, which differ from one another. The depen-

dence of the preexponential factiiv(r)] is an essential part  This is an exact solution of the sudden modulation equations
of the spatial dependence \{(r) given in eq 1.1. As an input  ysed in refs 5, 14, and 15. There, the transfer was considered
data used in the theories of intermolecular tran3fét,has to as nonadiabatic but weak where the perturbation theory holds
be continuous im and not composed from a few pieces related and strong where it gives way to DSE. Later on, the two
to different theories valid at different distances. The main goal expressions (15) were also br|dged by Considering both of them
of the present work is to bridge these two pieces together to a5 adiabatic transfer (along a quasi-ballistic mode) over either
get a single continuous formula for the requitglt) andW(r) the cusped barrier or the parabolic one. The former transforms
dependencies. It should be stressed that the urgent necessity tg) the latter with an increase of the level splittiny. 2This
match the Fermi Golden Rule and Kramers high friction theory, matching resulting in the general expression for the diffusion-
including DSE, which separates them, was recognized long ago.assisted reactiokpar Was first made by Calef and Wolyrfes

At first, it was realized in the well-known Calef and Wolynes  and later by Starobinets, Rips, and PoltaRhese approxima-
work® and then by means of the Pollak “variational transition tions will be considered in the next section, and the Simp|e

(1.6)

kpse strong nonadiabatic

state theory” (VTSTJ 2 In what follows, we will rely upon  interpolation formulas will be introduced for the large friction

these two alternative approaches to the problem at hand.  |imit. In section Ill, these formulas will be bridged with that
Although the transfer is assisted by the system delivery to for perturbation theory for getting the fin&VV) and corre-

the crossing point, at sufficiently smaW, it is limited spondingM(r) dependencies. In section IV, we will do the same

everywhere not by this motion but by slow tunneling with the - byt will account for the spatial dependence of the reorganization
rateker. The latter is given by the Fermi Golden Rule (second- energy peculiar for highly polar solvents. In the conclusions,
order perturbation theory developed in ref 13; see also eqgs 2.37ye will summarize all of the results and outline the remaining

in ref 1 and 1.7 in ref 5): problems.
) It should be emphasized that in this paper we focus on high
Koy = Vo (1.3) temperature, high barrier electron exchange reactions in Debye
T AVAT ' polar solvents. This implies that the reaction is thermally

) activated with electron tunneling proceeding in the vicinity of
However, at largelV, the tunneling ceases to control the  the crossing point of the diabatic potential surfaces. The solvent
reaction giving way to either energy activation at low friction  mades can be treated classically (nuclear tunneling is negligible).

(v < w) or free vibrations at moderate friction (with the well  gyrthermore, the effect of the high frequency quantum solvent
frequencyw/27). At even larger values of the friction, the  podes is neglected.

reaction is controlled by diffusion to the crossing point along

_the reaction co_ordinate_z. The last phenomenon was discovered|. Diffusion-Assisted Reaction

independently in two simultaneously published papers, refs 14 . . . .

and 15. The latter is addressed rather to the inner sphere low, 1 N€ maiching alternative adiabatic results (1.5) allows cover-
frequency vibrations such as in H-bonded complexes in water, "9 the whole domain of diffusion-assisted transfer. An impor-
studied later by pumpprobe spectroscop-1® The former tant generalization of this kind made by Calef and Wol§nes

addressed more specifically the outer sphere electron transfer€Sults in the following equation for the pre-exponent:

in Debye polar solvents where >
W J J
== 1+ ——— 2.1
y =’ (1.4) kew =2, [ N7 270 /_anJ (1)

Heret,_ = 1p ed/e is the longitudinal relaxation time of dielectric ~ where
polarization related to the Debye relaxation tine through

the ratio of the opticaldy) and static €) dielectric constants. _ VT 2T i _ 2
Later on, the phenomenon of diffusional control in the reaction AvA)=e 0 dyex AT Y+ (M| 22
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Figure 3. Correction factor for a cusped barrier ralg,as a function
of the reorganization energy.

and the dimensionless dissipative parameter

2T\y
In general, the theory of Calef and Wolynes is valid from the

intermediate (TST) to high friction (DSE) region (see Figure
2), so that

(2.3)

)]

or = Kast vl < VAIAT (a>2)
Kew = oo - 3 o (2.4)
7 B =0

but it is the best for the highest available friction (et 0).

This is actually the case in which we are mainly interested.
In this particular case, the motion along the reaction

coordinate to the crossing point is diffusional but it delivers

the system to either a cusped or a quasi-parabolic barrier

depending on whether the level splitting at the point is small or
large, respectively. In the cusped barrier limit— 0), the
expression (2.2) reduces to the following one:

J(0,2) = — 7i VAIAT e "*Terf(ivVAIAT) = J(1)  (2.5)
AlthoughJp is real and positive, it is not equal to 1 at any finite
barrier height/4, that is in generak. = kpse even atv— 0.
As seen from Figure 3Jo approaches unity only a&—co.
Otherwise

kpseJo(4) = Keusp V—0

1 [ (2.6)
5V —l=kppg V@

2ntl
The latter result is the more precise Kramers formula for a
parabolic barrier. It differs slightly from its simplified version
(1.5b) obtained for ¥ < 4. If V is not negligible (although
smaller thart/2 = 2U), thenkpar should be used instead of eq
1.5b. Unlike the latter, it is nonlinear in théT/V coordinate
of Figure 4.

km:
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Figure 4. Pre-exponerk of diffusion-assisted electron transfer between
the limits of cuspedT/V > 1) and parabolicT/V < 1) barriers. The
Kramers result for the latter is shown by the inclined dotted line while
the horizontal dotted and dashedbotted lines represent the DSE results
for A = o and A = 40T, respectively. All other curves are the
following: our interpolation (solid line), Calef and Wolynksfor high

and moderate friction (dashed lines), and VTST theory for the latter
one (dash-dotted). The points represent the exact results obtained in
ref 11 by numerical simulations for large. (= 0.01) and moderate
friction (oo = 1.0).

transfer over the barrier of arbitrary shape: from a cusped to a
parabolic one. As can be seen in Figure 4, this interpolation
not only approaches both these limits as expected but between
goes through four points numerically calculated in ref 11.

In the relatively low friction region, the better alternative to
the Calef and Wolynes approximation is provided by VTST,
which represents the pre-exponent in the following form:

P

 _P [T
VIST 277, 'V 2aT

and P = P(a, V) has to be determined by solving the
optimization problem as described in ref 11. Making this
numerically, we found that the VTST cunkéV) is very close

to the four green points obtained for lower friction by numerical
simulations made in ref 11. There, the reactive flux method
was employed for the integration of the Langevin equation of
motion using the velocity Verlet algorithf3.

The black points in Figure 4 were calculated o= 0.01,
that is fory/w ~ 45 atA/T = 40. This friction is large enough
to be well-approximated by the Calef and Wolynes (CW)
expression fok.. As for the green points, they were obtained
in the same way and for the said but for a. = 1 wheny/w
~ 4.5. Here, we are very close to the boundary of the high
friction region. As seen from Figure 2 in our cadéT(= 40),
this border is located at/w = VA/AT = V10, that is far to the
left from the cross-sectiony/w = 45 to which we mainly
address. The green points for the modest friction are somewhat
better approximated by VTST than by the CW theory, while
the black points for the higher friction are equally well-
approximated by the original CW theory and our interpolation

(2.8)

Itis easy to interpolate between the opposite limits represented(2.7). However, the latter will be solely used further on just

in eq 2.6 to get a simple analytic alternative to the Calef and
Wolynesk, from eq 2.4:

1 A—2V z{kcusp atv<T
A 87(2Td2 + 7V)

Kpar = Koar atVssT 2.7)

because of its relative simplicity.

[ll. General Interpolation

As a matter of fact, the cusp limit of either approximation
(2.6) or interpolation (2.7) is never achieved in reality because

This is the pre-exponent of the diffusion-assisted rate of electronat small V the limited stage of the transfer becomes not a
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Figure 5. Solid curves are our interpolation (3.1) between the weak rA

tunneling and the diffusion-assisted transfer. The former is given by Figure 6. Pre-exponenk in different theories as a function of the
the perturbation theory (PT, dashed line) while the latter is given by interparticle distance at large frictiog/p = 45) andV, = 0.138 eV,
the Kramers and DSE approximation (dotted lines). The lowest solid L = 1.24 A.

line is our interpolation at high frictiono( = 0.01, y/w = 45) while

the upper dotted horizontal line over it represents the DSE approxima-
tion. Above them there are the similar lines for the lower frictians

1.0, ylo = 4, 5). The bottom vertical lines indicate the lower limits
for the argument (3.13 and 0.43) accessible in two systems studied in
refs 23 and 24, respectively.

To get an impression of what happens for lower friction, we
used the same approach substitutipg: in the Zusman formula
(1.6) by eitherkcw from eq 2.4 orkyrst from eq 2.8:

_ terkew o Kerkurst
ket + Kew Ker + Kyrst

Both of these results are also shown in Figure 5. The discrepancy
between them is within the limits of accuracy of both ap-
proximations. The electron transfer rate increases with decreas-
ing friction due to acceleration of the motion along the reaction
coordinate. At a further decrease of friction, this motion becomes
ballistic, and the transfer rate reaches its upper limit established
by a platealk = krst = w/27. This plateau is not shown in
Figure 5 because it is too high. Furthermore, we are interested
in quite the opposite limit of the large friction available, where
our interpolation (2.7) is the best.

In general, the importance of the diffusion control of the
transfer increases with the increasing nonadiabatic coupling at
contact. This effect is very impressive, especially if considered
in real space. Using expression 1.2, we transformed into this
space (Figure 6) the result obtained for the large frictidm
= 45, It should be noted that in the vast majority of papers on
intermolecular electron transfer, only the perturbation theory
was so far used? This is reasonable if either the electron
coupling is much weaker than in the present example or the
closest approach distance is much larger( 10 A). In ref 24,
for the first time, these conditions were shown to be broken in
the system studied experimentally. There, only the use of the
Zusman eq 1.6 instead of the perturbation theory allowed us to
obtain a reasonable fit to the experimental data. However, Figure
is not too large iV < Vo < T, which is usually the case. For 6 show_s that bein_g better th_an perturbation theory, the Zusman
instanceT/V; calculated from the contact transfer rate obtained 2PProximation still overestimates the transfer rate at short
in ref 23 is equal to 3.13. As seen from Figure 5 at this point dlstancgs where t.he.t.)arrler becpmes parabolic. For attainment
(in contact)k is only half of the perturbation theory value and ©f the highest reliability of the fitting, the use of the present
this difference reduces quickly with increasing intermolecular th€OrY is essential. In the following section, we will see how it
distance. Only recently the system was encountered (peryleneChanges the real rate of transié(r) given by eq 1.1.

+ TCNE) where the contact coupling is larger thBmamely,

diffusion to the crossing point but an electron tunneling. This
means that the adiabatic theory should give way to the
perturbation one as DSE does in the Zusman formula (1.6).
Hence, to get the interpolation valid at adywe just have to
substitutekpse in this formula forkpar from eq 2.7:

— I(PT I(DAR
kPT + kDAR

At small V, this constant is equal tibr, which is independent
of friction unlike the longitudinal relaxation time;, which
increases withy. At given o = 10', we obtain from the
definition (1.4):

k k (3.3)

k (3.1)

1

w

Y
0.0220 = 2.2 x 10" st aty/w =45 (0. = 0.01)
0220 =2.2x 10%s ' atylo =45 @=1)

40

|

Correspondingly, the height of the DSE plateau is higher the
smaller is the friction (see Figure 5), but this plateau is never
achieved byk(V), which lowers with increasiny approaching
the Kramers limit for the parabolic barrier. As a resitis
never as high as its DSE value but the very existence of this
plateau as well as Kramers limit greatly reduces the aétaal
compared with PT. However, the real deviation from the letter

(3.2)

T/Vo = 0.432* There instead of the perturbation theory néter
the Zusman formula (1.6) was used to account for DSE.
However, at the highest = Vy, even this correction is not

IV. Transfer Rate in Polar Solvents

The reorganization energy employed in the foregoing analysis

was considered as a distance-independent parameter. This is

enough. As seen from Figure 5 at this point, the Kramers high true only for in nonpolar solvents where the inner sphere

friction region is actually reached where the trkigs twice

contribution to the reorganization energy is the dominant one:

smaller than its DSE alternative, not speaking about a much A = 1j; = const. In highly polar solvents, the situation is the

larger perturbation theory value.

opposite: the inner sphere contribution can be neglected as
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0.16 - significantly distorted, if the barrier reduction B(r) or A(r)
012 dependence is ignored. In such a case, the kinetic rate constant
"» 0081 ko= fW(r)dr
4
0.04+ can be also overestimated as wel\gobtained by fitting the
0.00 theory to the experimental data. Fortunately, the dispersion of
5.0 reorganization energy is usually taken into accétisind the
lowering of the activation barrier was also accounted for when
_ ) ) necessary?
Figure 7. Pre-exponent, exponent, and their proditas functions The diffusional control of the tunneling so far was considered

of interparticle distance with (solid lines) and without (dashed lines)

) U only with the Zusman theor3#2>Now, we can estimate what
accounting for the space dependence of the reorganization energy.

is the difference between this and the present theory. In Figure
8, the presenW(r) is exhibited in the larger spatial interval
compared with the outer sphere reorganization energy, whichthan in Figure 7 and compared with the Zusman rate and that
changes with distance between reactants according to the well-obtained using the Golden Rule (perturbation theory). Both our
known law?34 and the Zusman theories, which account for the diffusional
control of the tunneling, and the rates of transfer at 10 A
Ar) = Ao(2 — alr) (4.1) are systematically lower than predicted by the perturbation
. L theory. This difference ranges up to 3 orders of magnitude at
In acetonitrile, the contact reorganization enetgy= 1.15eV. 1o closest approach distance. The difference between the

a“‘?' the average distance between contacting reactants & . Zusman and our results is less pronounced but still runs as high
A, if these are perylene and tetracyanoethylene (TCNE) as in as 3— 4 times atr < 6 A.

ref 24. Special attention should be paid to the deviation of the true

Take into account that th&(r) dependence makes the pre- \y) dependence from its popular exponential approximation:
exponentk slightly larger in the adiabatic near contact region

but smaller at larger separations, where the transfer is nona- W(r) =W, g (o) (4.3)
diabatic (Figure 7). In parallek(r) dependence is responsible 0
for the increase ob)(r) = 4(r)/4 whose contact value 1§(0) In the limited range of distances, this simplification leads to a
= Lo/4, while at infinite separation itis twice as largei(~) = different and sometimes nonphysical value % and|. In
Ao/2. As aresult, the transfer rate particular, near the contadtcould be smaller thah, but in
Ar) the medium larger than it and only ase, the identityl = L
W(r) = k(r) ex;{ - [T - V(r)] /T} (4.2) is reached. Too large values bometimes reportéé2° are

usually identified withL but associated with electron super-
decreases with distance not only due to the pre-exponent but to€Xchange, which dominates the direct exchange of an ele€tron.
increasing the activation energy as well. However, it also may be an indication of too strong coupling,
Another important factor that affects the activation energy is resulting in diffusional control of the transfer at short distances,
making the dependence of the rat4r) on the distance less

the nonadiabatic coupling(r), which increases when approach- .
ing contact. As a result, the contact Arrhenius factor is Pronounced and leading to a natural excess over L. For

significantly enhanced %y > T, although it reduces sharply instance, the *locall = — 2 (d InW/dr)~* reaches In our case
with increasing the inter-reactant distance. This effect is 1-67 A (atr = 8.4 A) as compared to the true tunneling distance
dominant at short distances wheve > T, while at larger L = 1.24 A (atr—co).
separation, the increase &) contributes mainly to reduction
of the Arrhenius factor.

The same tendency manifests itself in the reductiow(, On a particular example of the resonant electron transfer, we
which is the product ok(r) and ther-dependent Arrhenius factor  have demonstrated that the Zusman account for the dynamical
(Figure 7). The spatial dependence of the transfer rate is solvent effect is insufficient for determination of the transfer

V. Conclusions
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Abstract

A few theories of activated electron transfer in inverted Marcus region are used for bridging the non-adiabatic, solvent controlled and
deeply adiabatic transfer. The simple analytical interpolation between dynamic and stochastic theories provides a continuous description
of the electron transfer rate at any non-adiabatic coupling between the diabatic states. When coupling increases with shortening of inter-
particle distance the pre-exponent of the Arrhenius transfer rate first increases being quadratic in coupling, then levels off approaching
the “dynamic solvent effect” (DSE) region and finally is cut off exponentially due to adiabaticity of the transfer.

These changes affect significantly the spatial dependence of the transfer rate near the contact provided the coupling there is strong.
The rate tends to zero at contact distance being strongly suppressed nearby adiabatically. It is much smaller then the perturbation
(golden rule) and even DSE results. The latter is actually unattainable anywhere if contact tunneling is really strong. The transfer rate
is a bell-shaped curve adiabatic and non-adiabatic on the opposite sides and sensitive to the friction (DSE damping) only in between,

near the maximum.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Electron transfer; Inverted region; Transfer rate

1. Introduction

The electron transfer rate is a fundamental property
used in the theories of intra-molecular and inter-molecular
reactions in dense media [1-4]. For electron transfer reac-
tions the potential surface consists of the two diabatic
energy levels 1 and 2 which are commonly assumed to be
parabolic and even identical but shifted relative to one
another. Recently, we studied the resonant electron trans-
fer when the free energy of the reaction AG =0 [5]. Here,
we turn to the opposite case when the transfer 1 — 2 is irre-
versible and proceeds in Marcus inverted region (Fig. 1),
where the free energy is negative and large:

—AG > > kgT, (1.1)

* Corresponding author. Tel.: +972 8934 3708; fax: +972 8934 4123.
E-mail address: cfbursh@wisemail.weizmann.ac.il (A.I. Burshtein).

0301-0104/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.chemphys.2006.01.001

where A is the reorganization energy of electron transfer
and kg is the Boltzmann constant. This is for instance the
highly exergonic ionization turning the neutral reactants
to the pair of the counter-ions:

D+A4—D"+4".
In general the distant dependent rate of electron transfer
W =W YT (1.2)

is a product of exponential Arrhenius factor (from now on
kg =1) and the pre-exponent W, whose r-dependence is
very specific for different inter-reactant distances r. The
activation energy

U:W (1.3)

is also r-dependent through both AG(r) and A(r) [3.4].

The free energy contains the Coulomb contribution
which in case of electrostatic attraction between counter-
ions reduces its value:
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Fig. 1. The intersection of the parabolic diabatic energy levels in the
inverted Marcus region.

62
AG(r) = AGy — <,

€r

(1.4)

where A Gy = AG(o0) and ¢ is the static dielectric constant
of the solvent. The polar surrounding of the ions affects
also the reorganization energy making it distance
dependent:

APy =i+ A2 —a/r), (1.5)

where /; is the so-called inner-sphere reorganization energy
and

. (l 1)@2
=——-)—
€0 €/ 0

is the outer-sphere reorganization energy (of polar sur-
rounding with optical dielectric constant ¢;) at contact dis-
tance o. In highly polar solvents considered here the
Coulomb interaction is negligible, that is the free energy
is actually constant (AG(r) = AGy = const.) and the reorga-
nization energy is large compared to the small inner-sphere
contribution neglected further on (4; = 0).

The r-dependence of Wy(r) results mainly from the dis-
tance dependence on the non-adiabatic coupling which
increases exponentially with reduction of distance:

r—o

Vir)=Vee T, (1.6)

where L is the tunnelling length. The tunneling determines
the level splitting 21 at the crossing point of the diabatic
energy levels. The transfer is non-adiabatic at large dis-
tances where the splitting is small but becomes adiabatic
at contact if the coupling there is strong enough. In be-
tween it passes through the so-called dynamic solvent effect
(DSE), when the transfer is limited by diffusion along the
reaction coordinate to the crossing point [6,7]. Moreover,
Zusman proposed the formula that sewed together the per-
turbation theory and DSE [6]. The latter becomes the
upper limit of the transfer rate achieved at the largest
Vo~ V.

The DSE was obtained and studied a lot of times in the
intramolecular transfer and in the solid state [8-15]. How-
ever, it was common until recently to use mainly the pertur-
bation theory in the theories of electron transfer in liquids
presuming that ¥} is small enough [3.4]. However, the pre-
cise fitting of transfer kinetics showed us that the true Vj is
as large that the DSE should be taken into account [16].
Now we think that this is not enough. We are going to
show here that even at more reliable, much smaller
Vo ~ 20 meV the transfer becomes adiabatically suppressed
at contact making DSE limit unattainable.

2. Pre-exponent dependence on distance

To cover the whole range of inter-particle distances one
has to use a number of theories valid at different coupling,
V, and the damping parameter y, which is actually a fric-
tion along the reaction coordinate. The relationship
between all these theories and their results was studied ear-
lier [17] and presented in two-dimensional domain (V) y).
The latter is reproduced in Fig. 2 in slightly different nota-
tions and used further on to reconstruct the space depen-
dence of Wy(r) and W(r) at high collision frequency 7.
However, the value of the latter should not exceed the bor-
ders shown by the double line in Fig. 2. Within these limits
the crossing region is passed by a single free pass. It is also
presumed that V' < T. Under these conditions the velocity
of passing conserves during the crossing allowing the clas-
sical Landau—Zener formula to be employed [17].

It should be also noted that in Ref. [17] a bit different
presentation of the transfer rate (1.2) was used:

W(V) :AFTST :AEC—U/T7 (21)
21
where I'tst is the canonical expression of the transition
state theory (TST) rate through the linear frequency of
the free vibrations in parabolic potential well, w/2n. We
see from the comparison that
)

= 5 A(r) (2.2)

has the same r-dependence as A(r).
In particular, within the second order perturbation the-
ory Wy(r) has the commonly used form [3,4,17-217:

Wo (}’)

2
Wy = % \/;i; = 2_U;APT> (2.3)
where
vt
Apr =2VmA and A= P o (2.4)
Parameter
x=VA= T (2.5)

hov T

is space dependent due to exponential decrease of coupling
(tunnelling) strength with inter-particle distance according
to Eq. (1.6). Parameter o chosen as an ordinate in Fig. 2
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Fig. 2. Different theoretical results for 4(o, y/w) dependence and the borders between them established in Ref. [17].

grows when the distance between the reactants reduces.
Correspondingly the transfer rate as well as its pre-expo-
nent increase from the bottom to top in the vertical
cross-section of the plane (o, ) starting from the perturba-
tion theory which is essentially non-adiabatic. The latter
holds at high particle separation, within the borders indi-
cated in Fig. 2. Above them (at & > 1) the transfer becomes
adiabatic and sharply reduces with increasing of V(r) at
further reduction of inter-reactants distance.

An adiabatic alternative to the perturbation theory
result, (2.4), is given by the following formula [22]:

_5.2/3
1/3 g2

AAD ~ 3o (26)

Since at small interaction 4 increases but decreases at large
one there should be a maximum at o ~ 1. This is really the
fact following from the numerical calculation of thermally
averaged prefactor 4 for moderate (intermediate) friction
region [17]:
1.44
1.24
1.04

0.8 1

AMF

0.6 1
0.4+

0.2+

0.0 : . . . : ;
0 1 2 3 4 5 6

Fig. 3. The exact A(«) in moderate friction region in comparison with
perturbation theory (PT) and adiabatic (AD) limits.

<, , T v U

Ay =2 -WE<1— -WE) “de, —<Ll<Z.

MF \/0 [§] (5] € €, U p T
(2.7)

The results (2.3) and (2.6) for weak and strong inter-level
interaction follow from this general formula at « < 1 and
o > 1, respectively. The comparison of these limits with
the result of exact calculation of Ayp(a) from Eq. (2.7)
are shown in Fig. 3. Taking into account Eq. (2.5) as well
as A(r) dependence from Eq. (1.5) and V(r) dependence
from Eq. (1.6) we obtain the space dependence of App
for highly polar solvents (Fig. 4) which demonstrates the
adiabatic suppression of electron transfer at short
distances.

The same effect is present at higher friction. However,
between the adiabatic and non-adiabatic regions there is
a peninsula where the famous dynamic solvent effect
(DSE) [6,7,23] takes place (Fig. 2). There A does not

0.4-
0.3
< 0.2-

0.1 1

0.0 T T T T . T T , ,
7.0 7.5 8.0 8.5 9.0 9.5 10.0

r, A

Fig. 4. The space dependence, Amgp(r), in highly polar solvent at
Jo=115eV,L=1A,0=TA, Vy=0.02¢V.
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depend on the interaction in the crossing point, but is lim-
ited by a diffusion to this point along the reaction coordi-
nate. As was shown in Ref. [17]:

2 U, U
@ %, where Uy = ————

(1+ Vo)

Apsg = —
b4

(2.8)

where U is the activation energy for the transition 1 — 2 as
before, while U’ is the activation energy for the reverse
transition, 2 — 1. In inverted region the latter is always
much larger than the former (see Fig. 1), so that Uy~ U.
In this case the weak r-dependence of Apgg comes from
only U(r) dependence, that is from AG(r) or A(r). As to y,
it is simply related in polar solvents to the longitudinal
relaxation time of dielectric polarization, 7i: y:wer
[17]. Therefore one can easily get from Egs. (2.8) and
(2.2) the following result:

WDSEZCU_2 Ueff%i E
0 y VrT o Vol

which is twice as much as the famous Zusman analog for
reversible DSE. The difference is objective because we con-
sider irreversible transfer (U’ >> U) while the resonant
transfer is reversible in principle (U’ = U).

The exact expressions for the high and low coupling
obtained in Ref. [17] can be used for making a good inter-
polation between these limits which is valid approximately
at any o

[
A  Awr  Apse’

(2.9)

(2.10)

It follows from this formula that 4 = Ay at small and
large o while 4 = Apgg in between. At the highest friction
the latter is almost a plateau which cuts off the top of
Ame(o) dependence (Fig. 5). The same is true for

MF
0.4+
1
0.34
DSE
<
0.2+ 3
4
0.14
0.0 d T v T v T v T T T v T v T v 1
00 05 10 15 20 25 30 35 40

Fig. 5. The general A(o) dependence for moderate friction (1) and higher
p=5x10"571(2);2.5x 10" 57! (3); 10" s7' (4) in highly polar solvent at
AG=2.14¢V and w = 10'* s7!. The rest of the parameters are the same as
in previous figure.

Wo(r) = 524(r) dependencies which are greatly reduced
near the contact comparing to perturbation theory valid
at large distances (Fig. 6). Of course, the finite ¢ put an
upper limit to V' making deep adiabatic region seen in
Fig. 5 unattainable if V is not sufficiently large.

The comparison of different theories over an unre-
stricted range of V(r) variation is given in Fig. 7 by example
of the high friction curve 4 from Figs. 5 and 6. The result
following from Eq. (2.10) is compared there with that of
perturbation theory as well as with Zusman-like formula
for irreversible electron transfer, accounting for DSE only:

PT
® AprApse - Wo

w us — A~ _ = .
AT m Apr + Apse 1+ W/ WSE

(2.11)

As well as in the case of the resonant electron transfer,
studied recently in Ref. [5] (Fig. 6), Zusman approximation

700+ 1
600
| 2
500
T, 4004
€ 1 3
o
= 300+
1 4
200
1004
0 T T T T T T T T T T T 1
7.0 7.5 8.0 8.5 9.0 9.5 10.0

r, A

Fig. 6. Distance dependence of W,(r) = 24 at the same parameters as in
previous figure.
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Fig. 7. The lowest curve from Figs. 5 and 6 as a function of coupling, V,
compared to the perturbation theory result and Zusman approximation
for W,
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Fig. 8. (A) Distance dependence of the pre-exponent W(r) and (B) the
total transfer rate W/(r) in highly polar solvent (thick line). The thin line in
(B) is the bell-shaped approximation to W(r), (2.13), normalized to the
same maximal value of W, while the dashed line is the perturbation theory
estimate: W (r) = Wi exp(=U/T).

corrects essentially the perturbation theory but is not en-
ough to approximate well the exact behavior of the pre-
exponent W, especially at large electron coupling (short
inter-particle distance) where the transfer becomes
adiabatic.

Now we are ready to turn back to the space dependence
of the total transfer rate (1.2) which is a product of W and
the Arrhenius factor which increases with distance due to
space dependence of U(r). It is this factor that shifts signif-
icantly the maximum of W(r) to larger distance than that of
Wo(r) (Fig. 8). Such a bell shaped distance dependence of
the transfer rate makes very problematic not only the pop-
ular contact approximation (W(r) = kod(r — o)) but even
the more reasonable exponential model,

W(r)=W.e?T. (2.12)

Much better approximation is provided by a model pro-
posed in Ref. [27]

WlTl
W(r)=—5 %"
ch® ()
Moreover, the latter allows the analytical solution of aux-
iliary diffusional equation of differential encounter theory
(DET). It provides the rate constant of bimolecular elec-

(2.13)

tron transfer in Marcus inverted region at any encounter
diffusion. Restricting discussion here to only kinetic limit
we have for the corresponding rate constant:

koz/ w(r)d’r.

Equalizing the results of ko calculation with either exact or
bell shaped model of W(r) we obtain A = 1.19 A instead of
L =1 A provided the maximal values are the same. As for
exponential model it provides qualitatively different W(r)
dependence but with the same ko if L=1 A and
W,.=10.7ns"'. If for some reasons the contact rate, W,,
is taken lower, then it appears that /> L [24]. This may
be a reason for often overestimation of the model tunnel-
ling length when fitting of bimolecular (forward) electron
transfer.

The exponential model of W(r) was shown to be inappli-
cable in the inverted Marcus case for not only forward
transfer but even more for the backward electron transfer
in geminate ion pair. It fails to explain the experimentally
observed non-monotonous viscosity dependence of the effi-
ciency of geminate ion recombination [25,26,4]. The latter
is originated by the ion start from inside of the bell shaped
recombination layer. In case of kinetic ionization they are
born at contact and move out through the recombination
zone. The faster they cross it the smaller is the recombina-
tion yield. This contrasts with outer start of ions generated
under diffusion control, whose recombination is facilitated
by diffusion [25,26,4].

(2.14)

3. Conclusions

The space dependence of electron transfer rate in deeply
inverted Marcus region was calculated taking into account
the adiabaticity of the process at strong coupling near the
contact. The result is qualitatively different from that
obtained earlier for resonant eclectron transfer [5]. The
transfer rate is non-monotonous, bell-shaped with a maxi-
mum shifted far from the contact. The best approximation
to it is a model given by Eq. (2.13), but neither contact nor
the exponential rate models.
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